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Lunar rotational dissipation in solid body and molten core
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Abstract. Analyses of Lunar Laser ranges show a displacement in direction of the Moon's pole of
rotation which indicates that strong dissipation is acting on the rotation. Two possible sources of
dissipation are monthly solid-body tides raised by the Earth (and Sun) and a fluid core with a
rotation distinct from the solid body. Both effects have been introduced into a numerical
integration of the lunar rotation. Theoretical consequences of tides and core on rotation and orbit
are also calculated analytically. These computations indicate that the tide and core dissipation
signatures are separable. They also allow unrestricted laws for tidal specific dissipation Q versus
frequency to be applied. Fits of Lunar Laser ranges detect three small dissipation terms in
addition to the dominant pole-displacement term. Tidal dissipation alone does not give a good
match to all four amplitudes. Dissipation from tides plus fluid core accounts for them. The best
match indicates a tidal @ which increases slowly with period plus a small fluid core. The core
size depends on imperfectly known properties of the fluid and core-mantle interface. The radius
of a core could be as much as 352 km if iron and 374 km for the Fe-FeS eutectic composition. If
tidal Q versus frequency is assumed to be represented by a power law, then the exponent is
-0.19+0.13. The monthly tidal Q is 37 (—4,+6), and the annual Q is 60 (~15,+30). The power
presently dissipated by solid body and core is small, but it may have been dramatic for the early
Moon. The outwardly evolving Moon passed through a change of spin state which caused a burst
of dissipated power in the mantle and at the core-mantle boundary. The energy deposited at the
boundary plausibly drove convection in the core and temporarily powered a dynamo. The
remanent magnetism in lunar rocks may result from these events, and the peak field may mark the

passage of the Moon through the spin transition.

1. Introduction

The Moon keeps one face toward the Earth. This simple
statement of the equality of the rotational and orbital periods has
a deeper implication. Since there is no reason to expect that the
Moon formed in such a special rotational state, there must have
been one or more mechanisms for changing the lunar rotational
angular momentum and energy.

Laser ranges from the Earth to the Moon started in 1969. The
analyses of laser ranges discovered active lunar rotational
dissipation nearly a decade later, and during the past 2 decades
the detection has improved [Yoder er al., 1978; Ferrari et al.,
1980; Cappallo et al., 1981; Dickey et al., 1982; Williams et al.,
1987; Dickey er al., 1994]. The Moon's rotation is locked in a
spin state (Cassini state) such that the 18.6 year retrograde
precession of the lunar equator plane along the ecliptic plane
matches the precession of the lunar orbit plane. In the absence of
dissipation the equator’s average descending node aligns with the
orbit's average ascending node. Laser range analysis finds an
average shift between the two nodes which indicates ongoing
dissipation. The presently measured shift is —9.8" in the node of
the equator on the echptic equivalent to an arc length shift of
0.263" in the pole direction. The arrangement and precession of
spin and orbit poles is shown in Figure 1. Over the past
2 decades the significance of the pole shift has improved from the
first detection to the present 1% uncertainty.
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There are two proposed mechanisms for the lunar rotational
dissipation: solid-body tidal dissipation [Yoder, 1979; Cappallo
et al., 1981] and dissipation at a liquid-core/solid-body boundary
[Yoder, 1981]. Tidal dissipation must exist for the Moon at some
strength. Core dissipation requires a fluid lunar core. While
there are several reasons to suspect that a core is present (see
section 19), and the recent Lunar Prospector mission has
strengthened the evidence, the consequences of a small core are
subtle, and it has remained unclear whether it is solid or liquid.

Both tidal and core dissipation can displace the equator plane
in the observed manner. In the past it has not been possible to
distinguish between them. Improvements in the range accuracy
and increasing data span now make it possible to use small
additional signatures to discriminate.

This paper explores the two dissipation models used for
numerical or analytical computation of the lunar rotation
(sections 2 and 3 for tides and section 9 for core). It presents
analytical developments for the effect of each model on the
rotation (tides: sections 4, 5, 7, core: sections 10, 12-14) and
orbit (tides: section 8, core: section 15). Results from fits to the
Lunar Laser Ranging (LLR) data using the two dissipation
models are presented ( section 18). Results are discussed and
compared with other evidence on the lunar interior (sections 19
and 20).

2. Rotational Dynamics

The attraction of the Earth and Sun on the nonspherical figure
of the Moon applies torques. The Earth dominates the torques.
As a consequence, the lunar equator plane precesses along the
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Figure 1. The spin axis and orbit normal precess in 18.6 years
about the ecliptic pole in a retrograde direction. Without
dissipation the three poles would be coplanar. Dissipation in the
Moon causes a small displacement of the spin pole orthogonal to
that plane.

ecliptic plane in 18.6 years (tilt 1.54%) with a superimposed
sequence of periodic variations in pole direction, and the rotation
is synchronous with variations in rotation about the polar axis.
Much of the sensitivity of the LLR data to lunar science
informatiori comes through this time-varying three-dimensional
rotation of the Moon called physical libration. These parameters
include the moment of inertia combinations B=(C-A)/B and
Y=(B-A)/C, seven third-degree gravitational harmonics,
dissipation due to solid-body tides and core, and Love number k,.
Dickey et al. [1994] review the Lunar Laser-Ranging technique
and results.

The range accuracy has improved with time, and the most
tecent data are fit with a 2 cm rms residual. A highly accurate
model for the orbit and rotation of the Moon is needed to fit the
lunar rariges. The orbits of the Moon and planets and the rotation
of the Moon are simultaneously numerically integrated. The
lunar initial conditions for these integrations and the parameters
of the previous paragraph come from least squares fits to the
lunar range data.

The numerical integration of the lunar rotation requires the
equations of motion and a model for torques. The orientation of
the Moon is specified by three Euler angles. The angular
velocities are computed from the Euler angles and their rates.
The lunar rotation is computed from differential equations for the
angular momentum. The vector differential equation is the Euler
equation when expressed in a frame rotating with the body
(Moon):

Q(dlt_(l)) + oxlo=T. )
I is the moment of inertia matrix, @ is the angular velocity vector,
and t is time. The angular momentum vector is the product Ie.

The torque T includes the gravitational interaction of the lunar
figure with external bodies. In the integration model these are
Earth, Sun, Venus, and Jupiter. For a spherical attracting body,
the second-degree torques depend on I and take the form

3GM
T, =3

M is the mass of the attracting body, and r is its position with
respect to the Moon's center. G is the gravitational constant. In
the Jet Propulsion Laboratory (JPL) model, additional torques
come from third- and fourth-degree lunar gravitational harmonics
and figure-figure interactions (triaxial Moon with oblate Earth).
Since the orbits used for torque computation include the
influence of gravitational harmonics, planetary perturbatiofis, and
relativity, the torques include indirect effects due to those
perturbations. The lunar orientation is required to compute the
torques, and the body-referenced angular velocities depend on the
Euler angles and their rates.
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In the JPL numerical integration model the Euler ahgles consist
of a node-like angle y from the J2000 equinox along the J2000
Earth's equator to the descending node of the lunar equator, a tilt
0 between the two equators, and an angle ¢ from the node along
the lunar equator to the lunar zero meridian. For analytical
calculations it is more useful to give Euler angles defined so that
the Earth's equator plane replaces the ecliptic plane in the
foregoing sequence of three angles. Equation (1) is equivalent to
three second-order, nonlinear differential equations for the Euler
angles.

Tidal effects cause I and the gravitational harmonics to be time
varying. This will be described in the next section. If there is a
fluid core, then in addition to (1) a vector differential equation is
needed to describe the core rotation. There would be torques
from interactions at a core-mantle intetrface which must be
applied with equal magnitude and opposite sign to the mantle and
core (section 9).

3. Computational Model for Tidal
and Rotational Deformation

In addition to causing torques, the attraction of the Earth and
Sun also raises tides on the Moon. The time-varying tidal
distortion of the Moon changes both the moments of inertia and
the torques, thereby modifying the rotation. Spin also distorts the
Moon, and that time-varying deformation can be treated along
with tides.

The Moon must be distorted by sclid-body tides. The elastic
tidal response of the Moon is modeled with Love numbers. The
amount of anelastic tidal dissipation is not known a priori, but
dissipation must be present. Consequently, for 2 decades a tidal
dissipation model has been used to fit the observed lunar
dissipation for Lunar Laser range data analysis. A time-varying
expression for the lunar moments of inertia is used in the
program which numerically integrates the rotation of the Moon
and the orbits of the Moon and planets.

An early theoretical investigation by Peale [1973] of elastic
tidal effects on rotation about the pole concluded that the effects
were small, but he did not find the larger effect in pole direction.
Analytical theories for both elastic tides and tidal dissipation
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have been presented by Yoder [1979] and Eckhardt [1981]. Bois
and Journet [1993] attempted a numerical approach. An
equation for time-delayed lunar moments of inertia is used by
Newhall and Williams [1997] for numerical LLR data analysis.

The moment-of-inertia expression can be split up into a fixed
part, a part for tidal deformation, and a part for spin-related
distortion:

+1 “4)

tide * “spin *

I=1 4+

ngi

In the principal axis system the rigid-body principal moments of
inertia are A<B<C. The first axis, associated with A, is
approximately toward the Earth, and the third axis, associated
with C, is nearly in the direction of the spin vector:

A0 O
Ingld =| 0 B 0 | (5
00 C

The rigid-body moments are used to define o=(C-B)/A,
B=(C-AYB and y=(B-A)/C. Only two are independent with
a=(B-y)/ (1-Py). Those relative differences and the ratios
A/IC=(1-By)/ (1+B) and B/C=(1+Y)/(1+PB) can be determined
much more accurately than the moments of inertia.

The tides affect the moments. The second-degree tide-raising
potential at a point on the lunar surface (Moon-centered unit
vector u') is

GMR?
Viide = 3

For the tide-raising body, M is the mass, and r is its Moon-
centered position vector (components r,, distance r, unit vector
u=r/r, components ;). For the Moon, R is the radius 1738 km.
Py(u-n’) = (3/2)[(u-u')2-1/3] is the second-degree Legendre
polynomial. To calculate forces, the positive gradient of (6) is
taken with respect to the position Ru’ (potential sign convention
is plus for the point mass potential). Along the Earth-Moon line
the acceleration is outward from the Moon. For the tidal part of
the moment the nine matrix components (indices i, ) are

ky MR L
1t1de,1j=_ P (uluj_ 3 )’ ™

Py(uw). ©)

where &, is the second-degree potential lunar Love number and
the delta function 8 ; modifies the diagonal components.

An elastic body will also distort from rotation. In a rotating
frame the additional potential at the surface is separated into two
parts: one spherically symmetric and the other multiplying a
second-degree spherical harmonic.

R? ? .

V<pin= 3 [ 1-P,(u-m) ] . ®)
The angular velocity vector is @ (components ®,, scalar w, unit
vector @). Distortion from both parts of the potential contributes
to the moment of inertia components.

R w?
[Spln,lj= 3G [kz((l),-ﬂ),—3—5,j +S(1)28’-j )]

The Love number k, and the spherical parameter s depend on the
elastic properties of the Moon. See Appendix A for a discussion
of the spherical term. Rotational acceleration can also distort the
Moon. These distortions are shown to be small in Appendix B.
Since w;/w = 1 and ri/r = 1, there are static-deformation
contributions to both the spin and tidal parts of the moments. It is

a matter of definition whether such constant parts are left in the
tidal and spin parts of the moments or moved to the "rigid" part.
In the work by Newhall and Williams [1997] the average values
of the three diagonal terms of the spin part were nearly nulled by
ignoring the s term and adding to the diagonal n%/3, n?/3, -2n?/3,
respectively, inside the parenthesis of (9). Here n is the sidereal
mean motion. This is a wise choice for a rapidly spinning object
like the Earth, where significant oblateness is caused by spin, but
for the slowly rotating Moon the spin-induced oblateness is
smaller than the permanent figure and either choice is reasonable
(see section 6).

In the tidal and spin parts of I, the position r and spin rate ®
are functions of ume. If the moments I ;. and ISpin are evaluated
using r(r) and @(z), respectively, then the elastic response of the
Moon will be accounted for in the resulting rotation. The
sensitivity of the LLR analysis to the Love number k, comes
through these terms. Tidal and spin dissipation effects arise if the
distortion is not an instantaneous response. In the program which
numerically integrates the rotation and orbits the tidal dissipation
is introduced with a time delay Ar by using r(+~Af) and @(~At)
when computing the distorted moments. In the differential
equations (1) and the torque (2) it is I which is time delayed. The
time-delayed position and spin rate appear only in the moments
and not in the ® explicit in (1) or the r explicit in (2). With an
analytical expansion more generality can be introduced through a
separate time delay, or, equivalently, a separate phase shift, for
each periodic term in the moments. Such an analytical solution
will be developed in the next section.

Some numerical values can be assigned to the above effects.
The model used for the lunar and planetary ephemeris DE403
included tidal dissipation but not core dissipation, so the DE403
solution generated in 1995 represents a limiting possibility with
the Love number k, = 0.0300, the time delay Af=0.1673 day,
and the polar moment normalized with the lunar mass and radius
C/mR? = 0.3944. With these values the ratio of the tidal moment
factor to C is (k, MR3/ Ca®) = 5.7x1077, where a = 384,399 km
is the semimajor axis of the lunar orbit. Similarly, take the
common factor in (9) with @w=n (for constant part) and
normalize by C to get (k,n? R°/3GC) = 1.9x1077. The time
variation is even smaller than these values. The direction of the
Earth as seen in the lunar principal axis frame varies 0.1 radian in
both the north-south and east-west directions. The eccentricity e
of the lunar orbit is 0.055, so that the (a/r)°® tidal factor varies by
3e. The spin rate direction varies <0.001 radian with respect to
the principal axes, and the spin rate relative magnitude varies
about 1074, Thus the relative time variation of the moments is of
order 1077 for tides and 1010 for spin. The relative vanation due
to time delay is smaller yet since it involves the factor nAt, which
is 0.039 = 1/26 for DE403 values.

4. Tidal and Rotational Dissipation:
Analytical Development

What are the dynamical consequences for the rotation angles
of the tidal and rotational deformation and dissipation? Series
solutions with numerical coefficients have previously been given
by Yoder [1979] and Eckhard: [1981]. The results depend on
how the specific dissipation Q varies with deformation
frequency. The specific dissipation used here is a whole-body Q,
and just as k, depends on elastic properties of lunar material as a
function of radius, k,/Q is a function of the distribution of
internal dissipation. The numerical model with constant time
delay is equivalent to Q proportional to 1/frequency. For the
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values of time delay and k, given in the previous paragraph,
Q =26, which, as will be seen below, is for a 1 month period.
Yoder gives series for the inverse frequency case, and he gives
the difference between series for that case and a constant Q case
(no frequency dependence). Eckhardt gives series for the
constant Q case. The solution in this and the next section will
have a separate Q for each deformation frequency. Thus the
coefficients of each periodic term in the rotation series can be
functions of more than one deformation frequency.

The torque expression (2) involves uxIu/r, where the unit
vector u=r/r. The Euler equation (1) involves @xI®.
Restricting the following development to the second-degree
torques and tides yields

daw) o 3GM
dr = - oxlo + 3 uxlu. (10)

The tidal and spin parts of I depend on r, u, and ®. With a dyad
form for products of components the moment matrices can be
written as

R Ly (W D) an

Ispm=% [ kQ(mco-(’;z— i) +soli ] (12)

where i is the identity matrix. It is immediately evident that the
parts involving the identity matrix will disappear in the cross
products. With dissipation the tidal and spin deformation parts of
I have delayed responses. An asterisk is used to distinguish the
parameters which originate from I. These include parameters of
the tide-raising body, which may be different from the torquing
body, and time-delayed quantities. Then (10) becomes

d(Iw) 3IGM
dr + mxIngld o - 1 uxlrigld u =
s[3GMM oM
kyR’ | - 3 e uxu* u-a* + 3 ux* u-@
+ w oxu* W-u* - = OXO* m-m*] (13)
r*3 3G ’

When the tide-raising body and the torquing body are the same,
the asterisk indicates the time-delayed parameters and M*=M.
When the tide-raising and torquing bodies are different, the
asterisk indicates the time-delayed parameters of the tide-raising
body and the night-hand side requires sums over the bodies (two
sums for the first term and one sum for each of the second and
third terms).

Note that if there is no dissipation (r=r*, u=u*, and @=W*)
and the tide-raising and torquing bodies are the same (M=M*),
then the first and fourth terms on the right-hand side of (13) are
zero because of the cross products and the second and third terms
cancel. Without dissipation, not only does a bulge directly under
the attracting body exert no torque (first term on right-hand side),
and not only is the apparent torque (-®xI®) from working in a
rotating frame unable to interact with the spin-induced
deformation (fourth term), but the torque from the spin
deformation (second term) and the apparent torque from the tides
(third term) cancel one another. In the rotating frame the same
tide-plus-spin forces which elastically distort the Moon cannot
also apply torque on that deformation since they are aligned. In
an inertial frame the attracting body does apply torque on the
rotation-caused bulge. The time variation of the angular

momentum I® in the rotating frame is not altered by the elastic
deformations, but the rotation rates and Euler angles are still
influenced because of the time variation of I in that product.

Another piece of information can be gleaned from (13). For
multiple bodies raising tides and causing torques, there would be
sums over the bodies (briefly use a subscript for the body): two
sums in the first term on the right-hand side and one in each of
the second and third terms. Without dissipation, for every term
M, u xo0 there is a term Mn oxu, which cancels it, and for every
M,M,_u xu, there is a M, M, u xu . For a constant Love
number, multiple attracting bodies cannot alter the angular
momentum in the rotating frame through deformations without
dissipation.

With dissipation the four deformation terms on the right-hand
side of (13) are nonzero. The important torque terms arise from
the Earth interacting with Earth-raised tides, while the Sun is
only a minor influence. In component form the functions
Uy= (alry u; u, and @; @, /n? are needed. The diagonals of the
functions give (a/ry and ®? which occur in I in the derivative
on the left-hand side of (13). (The radius r is conveniently
normalized by the semimajor axis a, and the spin is normalized
by the mean motion n.) The series for these functions were
developed using the lunar orbit theory of Chapront-Touzé and
Chapront [1988, 1991] and the physical libration series by
J. G. Williams et al. (manuscript in preparation, 2001)
(hereinafter referred to as Williams et al., 2001). The functions
with and without phase shifts/time lags are multiplied together to
represent the four terms on the right-hand side of (13). When
written out in component form, each of the three vector
components of the differential equation has 24 terms on the right
side, and each term has a series expansion. Economy of effort is
achieved by combining the second-degree functions from Earth,
Sun, and spin into one matrix. The coefficients are in proportion
to the -M/a> and n2/3G that can be deduced from (7) and (9).
Then the 24 terms for each component (54 if the Sun is included)
can be replaced with six.

Since u;=1 and w;/n~1, the larger deformation terms involve
these components. As an example, the most important pair of
terms on the right-hand side of the third component of the vector
differential equation (13) is

3GM? *

—ky B> ——— [UHUIZ_UIZUI*I]' a4
Without dissipation this pair of terms will cancel, but with
dissipation a component multiplying a phase shift is selected for
each periodicity. The u, depends on orbit and physical libration
variations, with the dominant periodic terms from the longitude
variations of the lunar orbit. The largest of these is the monthly
(27.555 days) eccentricity-caused term depending on mean
anomaly ¢, approximately 2esin /. With this term as an
example, the brackets in (14) plus a smaller contribution (indices
2212) yield

22,000" (sin £* —sin #)=22,000" (*—¢) cos . (15)

For a positive frequency a positive time delay corresponds to
a negative phase shift and a positive specific dissipation Q
50 ( /* — ¢ )=-1/Q,. Terms of the form of (15) arise from a
constant torque coefficient multiplying a periodic deformation,
minus a periodic torque times a constant deformation. Other
terms result when a periodic torque multiplies a periodic
deformation, and a constant results when the periods are equal.
The phase for constant terms enters directly as a difference, e.g.,
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sin(#*~¢), while mixes of different periods give arguments with
angles mixed together, e.g., sin(2F*-£*—¢) — sin(2F—{—¢*).

The factor GM/a is ubiquitous, and for analytical computation
1t is useful to relate it to sidereal mean motion n. Kepler's third
law is modified for solar attraction [Brouwer and Clemence,
1961, chap. 12], and 1/a is set equal to the time-averaged 1/r for
the perturbed orbit:

GM 2(] n2 M 6
2~ "N\ 502 ) Gtem) (16a)
GM
3 - 0.9906 n? . (16b)

where n' is the mean motion of the Earth-Moon center of mass
about the Sun. The Earth/Moon mass ratio is M/m = 81.3006,
and for R = 1738 km the ratio R/a = 1/221.17.

The third component of the differential equation (13) describes
the rotation about the polar axis. This rotation angle nearly
follows the mean Earth as seen from the Moon, the Moon's
orbital mean longitude L plus 180°. The small remaining part,
the "longitude” angle of physical librations, is called t. For the
ecliptic definition of Euler angles in section 2, 0+y = L+1+180°.
The theory of the lunar rotation with torques on the lunar figure is
a classic problem [Eckhardt, 1981; Moons, 1982a, 1982b;
Petrova, 1996]. While the differential equations for rotation are
nonlinear, a linearized form gives a good first approximation.
For the present purpose, use Wy = n + 1, ignore the small W, W,
term, extract a linear T term from the rigid-body torque, and treat
the remainder of that torque as a forcing function. Then the polar
component of the differential equation becomes

C(i+3yn?t)+hyn=f. amn

The forcing term f, includes both the rigid-body forcing (without
linear T term) and the right-hand side of (13). The solution from
the rigid-body forcing is not an objective here but is treated in the
above three references (also see section 13). The resonant
frequency n ( 3 v )2 for the longitude variable has a period of
1056.1 days (including a correction factor S; =0.9759 and
adjustment for third-degree harmonics discussed by Williams et
al. (2001)). As an example, the resulting solution with the
forcing term proportional to (15) is —1.3" (k,/Q,) cos ¢, but there
is a small correction from the derivative of /55, and the final
contribution to T is —1.1" (k,/Q,) cos £. With the DE403 solution
values the coefficient is —0.0012" or ~1 cm at the lunar equator,
which projects into a few millimeters in range.

The solution of the differential equation (17) for a periodic
forcing term amplifies longer periodicities more than monthly
terms. Libration amplitudes larger than the monthly example
occur for annual, 206 day, and 1095 day periods. The latter
requires the most care since it is near the resonance. Dissipation
also induces a constant offset of T which is larger than any of the
periodic terms. Solar influences decrease the constant coefficient
by 0.2%. The derivative of 1 plays only a minor role for
longitude librations because it favors fast terms, while the
solution of the differential equation favors slow terms.

The mean lunar orbit plane is inclined 5.145° to the ecliptic
plane. The resulting ecliptic latitude motion of the Moon
depends on the angle measured from the node, with period
27.212 days, and the polynomial representation of the angle is
denoted F (=L-Q or mean argument of latitude). The leading
term for ecliptic latitude is 5.13° sin F, and this gives the
strongest forcing term for the lunar pole. Additional forcing

terms which depend on the mean anomaly result from the radial
variation and the variation in orbit longitude. Consequently,
forcing terms proportional to e sini have arguments F+{
(1/2 month period) and F-¢ (2190 days = 6.0 years). The
strongest forcing functions for rigid or deformed motion of the
lunar pole have arguments F, F—¢, and F+¢.

The influence of deformation on the pole direction, the latitude
physical librations, is calculated using two orientation
parameters. The p| and p, parameters are the x and y coordinates
of the ecliptic pole, respectively, using the lunar principal axis
frame:

p = -sin® sing, (18a)

p,= —sin@ cos Q. (18b)

The differential equations for p; and p, are coupled together [see
Eckhardt, 1981]. The linear approximation to (13) comes from
taking ®, constant, expressing the first two angular velocity
components as functions of p| and p, and their derivatives, and
extracting a linear term in p, from the rigid-body torque term
(second component):

A(ﬁz"‘ﬂ(l—(l)p.]+(1n2p2)+1.13n=fx, (193)

B(p +n(1-B)p,~4Bn2p ) +byn=f,.  (19b)

The forcing functions about the x and y axes have been multiplied
by the cosine of the equator's 1.54° tilt to the ecliptic plane
to give f, and fy, respectively. Resonance frequencies are
27.29638 days and 74.63 years (Williams et al., 2001). The rigid
or deformed forcing terms at 27.212 days (F) and 6 years (F-¢)
cause significant responses in the pole direction, but the
1/2 month response is weak. The first three terms on the right-
hand side of (13) are important for the pole. The derivative of I
plays a major role for the F term. The Sun increases the F term
magnitude by 0.3%.

For the linear part of the rotational dissipation solution, six
elements U ; are considered for each of the constant plus 52
periodicities of the Earth-induced torque/tide functions. These
include the largest functions plus smaller periodicities selected to
give longer periods or near resonant terms. To these are added
the Sun-induced functions for the constant and 13 periodicities
plus the larger spin terms. The appropriate combination of
elements for the right-hand side of (13) and the moment rate on
the left-hand side are computed for 52 (constant times periodic)
plus 2x522 (periodic times periodic, giving sum and difference
frequencies) combinations. Rotational coefficients are retained
above a threshold size.

In addition to the first-order solution, selected nonlinear
corrections from the rigid-body torques are added as second- and
third-order corrections. This has the effect of increasing the T
constant by 3% and increasing the magnitude of the F
coefficients for the pole by 2%. The pole response at 6 years is
made larger.

5. Tidal and Rotational Dissipation:
Series Solution

This section presents and discusses the lunar physical libration
series solution for tidal and spin dissipation. Comparisons are
made with the previous computations of Yoder [1979] and
Eckhardt [1981].
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Table 1. Longitude Libration Tidal and Spin Dissipation Terms are Given as a Function of Deformation Q Parameters?

Argument Period, Coefficients for Deformation Q Parameters
2D+ 2F F+¢ 2/ 2D /+F 2F4 F ¢ 2-F 342F D (- 2D-f 202D ¢ ¢-D 2F-27 F
96 13.6 137 138 148 256 269 272 276 279 283 295 29.8 31.8 206 365 412 1095 2190
days " " " " " " " " " " " " " " " " " " "
0 o 05 -03 19 55 176 8.4 3054 10.8 -0.2
/ 27.55 -1.1
2D-¢ 31.81 -0.3
20-2D 205.89 03 -03 -2.2 23 09
r 365.26 0.4 -0.4 8.5
/-D 411.78 03 0.3 -0.3
2F-2¢ 1095.18 -0.5 0.5 -149 -59 -148 -53 -03 17.9
F-¢-79°  2190.35 -0.8

4Each libration term is the product of a cosine of the argument at the left

, with its period in days, limes the sum of the coefficients (in arcseconds) to the

right. Each coefficient 1s multiplied by the Love number k, and divided by the Q for the deformation period (days) and deformation argument at the top.

The arguments of the series solution depend on polynomial
expressions for four angles. The polynomials are denoted ¢ for
lunar mean anomaly (period 27.555 days), #' for the mean
anomaly of the Earth-Moon center of mass about the Sun
(1 year), F for argument of latitude (27.212 days), and D for
mean elongation of the Moon from the Sun (29.531 days). Also
useful is the polynomial for the lunar orbit node Q measured
from the precessing equinox. It is also convenient to use L and L'
for the polynomial expressions for the mean longitudes of the
Moon and Sun, respectively, both measured from the precessing
equinox, where L=F+Qand D=L-L"

By subtracting the uniform rotation and precession motion
from the Euler angles, there results a set of small libration
parameters T, p, and ¢. For the ecliptic definition of Euler angles
(section 2) the conversions between Euler angles and the libration
parameters are Y =Q +0,0=/+p,and p=F + 180° + T - ©.
Equations (18a) and (18b) provide the connection to p; and p,.
The angle I (not to be confused with the moment of inertia) is the
1.54° mean tilt of the precessing equator to the ecliptic plane.
The product /6 is convenient because it is comparable in size to p
and 1.

The analytical dissipation senes for the longitude libration (7)
is tabulated in Table 1, and the latitude librations (p; and p,) are
in Table 2. Coefficients down to 0.2 are presented (a borderline

188 day term was not included in Table 2). In Table 1 the 6 year
term with phase is orthogonal to the rigid-body term owing to
third-degree harmonics. The amplitude of each periodic term in
the rotation depends on one or more of the Q parameters for the
deformation frequencies. For example, 1n arcseconds the
monthly p, term in Table 2 is

L (2174 80 47 18 07
2N 0 O CQry QO Qry

The coefficient is dominated by the Q for the 27.212 day month
(north-south motion), but the Q for deformation at the 27.555 day
anomalistic month and the @ at 1/2 month contribute a few
percent. Most of the p; and p, coefficients for argument F' are
equivalent to a constant, negative shift of the equator’s precessing
node. The constant /o shift is given in arcseconds by

2164 0.2 4.7

lcconst=k2 - QF + Q’, - QF+I'
_ 18 07 )
Qr Oy '

) cos F. (20)

2n

Compared to the monthly p; and p, coefficients, the @,
dependence has virtually disappeared, and the sensitivity to the
three principal frequencies of latitude forcing remains. In

Table 2. Latitude Libration Tidal and Spin Dissipation Terms®

Argument  Period, Libration  Function Coefficient for Each Deformation Q
2F F+# 2D F / 2D~¢ F-¢
136 13.7 148 272 276 3.8 2190
days " " " " " " "
F 27.212 P, cos 4.7 0.3 2174 8.0 0.3 0.7
F 27212 P> sin —-4.7 -03  -216.0 -80 -03 -0.7
F-¢ 2190.350 P, cos -0.2 -6.9 -5.8 -1.9
F-r 2190.350 P sin 03 8.3 75 2.6
2F 13.606 Io cos -1.1
2F 13.606 p sin 1.1
2F-¢ 26.877 Io cos 03 -0.8 -03
2F-7 26.877 p sin -0.3 08 0.3
11 27 555 Is cos 3.7 65 23
/ 27.555 p sin -36 65 -23
0 oo Io 1 -1.8 4.7 -216.4 -0.7

3L atitude libration parameters are p, and p, and, equivalently, p and /6 Each libration term is the specified trigonometric
function of the argument at the left (with its period) times the sum of the coefficients to the nght. Each coefficient is multiplied
by the Love number k, and divided by the @ for the deformation period (in days) and associated argument at the top.
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addition to the p; and p, parameters in Table 2, an approximate
conversion to p and /o is given. The latter pair is less complete
since it omits some smaller combinations including differently
phased mixes with F and .

The physical libration p, is approximately the tilt of the lunar
pole away from the Earth, and the monthly term is the largest
observable dissipation periodicity. (The constant in longitude
libration is not directly measurable since a change is
compensated by a shift of reflector longitude coordinates during a
solution.) The 27.212 day periodicity is the dissipation signature
that has been seen by LLR for 2 decades. With Q proportional to
1/frequency and the DE403 value of k,/Q = 0.030/25.9 =
1.16x1073, the coefficient of the p; term is 0.276". Since the
coefficient in (20) is dominated by the monthly Qf, the Q
determined by the DE403 fit of LLR data to a time-delay tidal
dissipation model effectively corresponds to a monthly period of
27.212 days. A different dependence of Q on frequency will
change the Q inferred from observations by only a few percent.
The [o shift is —-0.265", and the node shift is —9.8".

For the DE403 value of k,/Q a unit value in Tables 1 and 2
corresponds to a rotational displacement of 9.7 mm at the lunar
radius. It is interesting to compare the tidal sensitivities for
periodic rotation terms in the tables with tide heights. For the
largest tides of ~0.1 m, with arguments ¢ and F, the O, and Qr
are well represented among major rotation terms. Of the tides
from 1 cm to several centimeters, namely, 2D~¢, 2D, 2¢, F+¢, the
latter is most important in the rotation. Of the many tides from
1 mm to several millimeters, the rotation is sensitive to Q
parameters for F-¢, ¢', 2¢-2D. The 2F-2¢tide is only ~0.1 mm
but is selected by the near resonant period. The phase-shifted
part of the tide height is proportional to 1/Q. So the larger
sensitivities in Tables 1 and 2 correspond to phase-shifted tidal
displacements of a few millimeters down to a few micrometers.
For selected tidal frequencies the influence on the rotation
exceeds the tide height in size.

The dissipation terms have been evaluated for two
dependences of Q on frequency using the expressions in Tables 1
and 2 augmented with smaller coefficients. Table 3 evaluates the
coefficients for Q independent of frequency, and Table 4 uses O

proportional to F/frequency. The latter corresponds to the time
delay tidal model used for the numerical integration of the
rotation. For the 6 year longitude term, only the cosine
component is shown, but most of that term is in the sine
component (see Table 1). Most noteworthy are the monthly and
6 year terms for (p; and p,) latitude librations and the 3 year,
1 year, and 206 day terms for longitude libration. The most
interesting terms for testing frequency dependence of Q are the
3 year and annual terms in longitude libration. Table 1 shows
that the annual term is sensitive to the annual tidal Q, while the
3 year term is most sensitive to monthly O and 3 year tidal Q.
The series of Tables 1-4 scale inversely with C/mRZ, here taken
as 0.3932 with an uncertainty of 0.0002 [Konopliv et al., 1998].
Table 3 can be compared with Eckhardf's [1981]
computations, and Table 4 can be compared with Yoder [1979].
For the constant in longitude, Eckhardt (multiply his tabulated
differences by -2000) gave 342, and Yoder gave 350.4.
Eckhardt's values should be ~1/2% larger owing to his smaller
value of C/mRZ, so the constant term here is slightly less than the
two published calculations. For the 3 year longitude term,
Eckhardt has —24, in good agreement with Table 3. Yoder's
value for this near-resonant term is off by an order of magnitude.
For the 206 day term, Yoder has the right magnitude (5.0), but
the reversed sign, while for the difference between the annual
terms of Tables 3 and 4 he gives 8.4. Eckhardt does not give
terms smaller than 10. For the large term in latitude libration,
Eckhardt gives 210 and -208 for the monthly p, and p,
coefficients, respectively, and —-208 for the Io constant.
Compared with Table 3, his monthly magnitudes are 10% smaller
and the /6 magnitude is 7% smaller. The magnitude of the /o
constant should be less (1, sin / =9) than the average of the
two monthly magnitudes, so there is a 4% internal inconsistency
in Eckhardt. Yoder defines his latitude results as though a
rotation of the p and Jo variables, and the 229.6 value for the
latter parameter (there is a sign ambiguity due to an apparently
misplaced = in his definitions) is a good match with Table 4. The
second term in latitude librations is elliptical in p, and p, and
splits into ¢ and 2F—{ terms in /6 and p. Eckhardt gives ~14 for
p; and 20 for p,, in reasonable agreement with Table 3, while

Table 3. Evaluation of the Coefficients of the Physical Libration Theory for Tidal
Dissipation Using Q Independent of Frequency?

Argument Period, T P, Py Io [4
cos, cos, sin, cos, sin,
days " " " " "

0 o0 339.95 -223.88

F 2721 233.73 -232.41

F-¢ 2190.35 -0.14 -15.02 18.96

{ 27.56 -1.12 12.81 -12.75
2/-2D 205.89 —4.14 -0.11

/ 365.26 8.20 0.22

2-F 2791 -0.01 0.03

2F-24 1095.18 -24.30 -0.61 -002
/-D 411.78 0.36 0.01

F+0-2D 188.20 -0.34 0.46

2D/ 31.81 -0.39 0.39 -0.40
2D-F 32.28 -0.16 0.22

2F-2D 173.31 0.19 0.19 -0.19
F+Q-81° 27.32 -0.18 0.18

81°-Q 6798.38 0.18 -0.18
2F-4 26.88 -0.94 0.92
2F 13.61 -1.19 1.13
27 13.78 -0.03 0.30 -0.15

3Each coefficient (units arcseconds) should be multiplied by kyQ.
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Table 4. Evaluation of the Coefficients of the Physical Libration Theory for Tidal

Dissipation Using Q = Q[ F / Frequency?

Argument Period, T P Py Ic p
cos, cos, sin, cos, sin,

days " " " " "

0 oo 349.30 -230.20

F 27.21 240.30 —-238.98

F-¢ 2190.35 -13.39 16.86

14 27.56 -1.13 10.83 -10.76

2¢-2D 205.89 -5.03 -0.14

4 365.26 0.34 0.01

20-F 2791 -0.21 0.23

2F-2¢ 1095.18 —43.31 -0.93 -0.22

¢-D 411.78 0.64 0.02

F+£-2D 188.20 -0.31 0.44

2D-¢ 31.81 -0.38 0.36 -0.37

2D-F 32.28 -0.18 0.26

2F-2D 173.31 0.10 0.22 -0.22

F+Q-81° 27.32 -0.18 0.18

81°Q 6798.38 0.18 -0.18

2F-¢ 26.88 -0.68 0.66

2F 13.61 -1.19 1.14

2¢ 13.78 -0.06 0.26 -0.12

3Each coefficient should be multiplied by k,/Q,. Units are arcseconds.

Yoder gives 12.5 by 15.2, which is similar to Table 4's entries.
The numerical results of Bois and Journet [1993] are much
smaller than the analytical results and are in error.

The most important dissipation terms are at monthly, 206 day,
annual, 3 year, and 6 year periods. The series of this section will
be used for interpretation of LLR data fits (section 18).

6. Average Values and Definitions

Section 3 pointed out that the tidal deformation of (7) and the
spin deformation of (9) have constant parts. With deformations,
the "rigid-body" moments of inertia of (5) are not the time-
averaged moments. Since the second-degree harmonics J, and
C,, depend on the moments, careful definitions must be given.
The rigid-body moments A, B, and C are used to define
o=(C-B)/A, B=(C-A)/B, and y=(B-A)/C. J, is taken as an
independent parameter, while C,, and C/mR? are derived
parameters:

Dy ngia ¥ (1+B)
R 2 ngid 22
C22 rigia 2(2B-7+By) (22)

C 4 C22 ngid
£ Tt @3)
mR Y

The constant part of the functions (a/ry uu, and o, o; /n2 are
used to compute the averages. For accurate time-averaged values
of the moments normalized by mR? and the second-degree
harmonics, add the corrections from the appropnate columns of
Table 5 to the rigid-body values. There are very small tidal
contributions to the off-diagonal moments, and two second-
degree harmonics because two of the principal axes are not quite
aligned with the mean Earth and mean spin directions. The
principal axes of the rigid body and average deformed body do
not quite match.

In the JPL LLR software, B, v, k,, and J, are the independent
parameters, while C,, and C/mR? are derived. In the numerical

integrator the mean spin values have been virtually nulled out of
Ispin, which forces the mean spin effects into the "rigid-body"
quantities. Only the average tidal contributions from the Earth
(no Sun) should be added to rigid-body quantities to get averages.
Thus the LLR-derived values of B and ¥ reported in this and past
JPL papers depend on the rigid-body part without mean tides.
Ferrari et al. [1980] gave expressions to link values of J, and
C, which include average Earth-raised tides with &, and rigid
values of B, ¥, and C/mR?. Those expressions were used to report
numerical values there and by Dickey et al. [1994]. The original
rationale was that spacecraft-derived harmonics were generated
without a tidal or spin deformation model, while LLR analyses
did use a tidal model and a nulled average spin deformation.
Tidal models are now used to analyze spacecraft data [Lemoine et
al., 1997; A. S. Konopliv, private communication, 1996] as well
as LLR data. Table 5 can be used to recover average values for a
variety of definitions.

A fluid or strengthless Moon would relax to the shape of the
tidal plus synchronously rotating spin potential. To calculate the
equilibrium moment differences or second-degree gravitational
harmonics for the Moon, the fluid Love number k;=1.44 is
appropriate rather than the smaller quantity from elastic theory.
Such a calculation shows that J, is 22 times larger, B is 17 times
larger, and y and C,, are 8 times larger than the equilibrium
figure for the present distance. The Moon is strong enough to
support the stress elastically. It is appealing to conjecture that the
tidal plus spin figure was frozen into an earlier Moon closer to
the Earth [Jeffreys, 1915, 1937; Kopal, 1969; Lambeck and
Pullan, 1980]. The spread of factors from 8 to 22, corresponding
to distances of 0.50 to 0.36 times the present Moon, does not
make it easy to embrace the hypothesis. Lambeck and Pullan
invoke noise in the gravity field, the spectrum of power in the
higher-degree field extrapolated to second degree, to explain the
spread. Here the spectrum of Konopliv et al. [1998] is adopted
for the extrapolation, and a linear combination, which would be
zero for an equilibrium figure, is formed. The linear combination
of harmonics is J, — 10C,,/3 = (1.3+1.1)x107%, or the equivalent
expression f — 4Y/3 = (3.3£2.7)x107%, and the departure from
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Table 5. Mean Values of Deformations for Moments and Harmonics?

Parameter  Rigid Tide by Earth Tide by Sun  Oblate Spin Spherical Spin
I,/mR?  A/mR*  -4935x10%  -7x10°  -0.843x10%  2.529x10°¢
I,/mR?  B/mR? 2469x10°¢  -7x10°  -0.843x10°  2.529x10°¢
Iy/mR*  CImR? 2466x106  14x10®  1.686x10°¢  2.529x10°°
1,/mR?> 0 2.3x10°° 0 0 0
I/mR?2 0 -2.8x107° 0 0 0
LjmR* 0 0 0 0 0
A I3 ngud 3608x105  2.1x108  2529x10°8 0
o 0 2.8x10°° 0 0 0
S 0 0 0 0 0
C, Co3 g 1851x10°6 0 0 0
S 0 -1.2x10°° 0 0 0

3The tidal and spin deformations of the moments of inertia and the second-degree

harmonics have mean values (columns 3-6).

The symbol (or zero value) for the rigid-body

quantity is given in the second column. The numerical values in columns 3-5 should be
multiplied by the Love number £,. The last column should be multiplied by s.

equilibrium is comparable to the extrapolated power. The frozen
figure hypothesis is viable.

7. Frequency Shifts and Damping
From Deformation

The forced lunar physical librations have three resonances: one
in longitude libration and two for pole direction. The resonance
periods are the same as the periods of the three free libration
modes. The free librations are analogous to the solutions of the
reduced equations for linear differential equations, and the
unpredictable amplitude and phase must be established by
observation. See Williams et al. (2001) for a study of free
librations. Elastic deformation will shift the resonance periods
from the rigid-body values, and dissipation will damp the free
librations in addition to causing the forced terms of sections 4
and 5.

Elastic deformation without dissipation does not contribute
forced terms from the right-hand side of (13). It does influence
the rotation through the derivative of I in the I® term. The
largest modification comes from the i=1, j=3 tidal term in (7).
The u; component is a function of p;, and its derivative is
introduced into the differential equations. The square of the
monthly resonance frequency for pole direction
(precession/nutation mode) in the rotating frame is modified to

v;=n2[1-%sin21+3(s,a+szﬁ')+k2§cos1], 24)

where §,=0.9778, §,=0.0018, and B'=629.978x107% is a
modification of B to include effects of third-degree harmonics
(see Williams et al., 2001). The tidal part depends on the
combination

R M R\3
(= mT ;(7) =1.91x1075. 25

For the DE403 k, value, the tidal part shortens the monthly
resonance period by 8x1076 day. The equivalent 81 year period
in the nonrotating frame is shortened by 9 days, and the 24 year
period in the 18.6 year precessing frame is lengthened by 0.8 day.
Other elastic effects on the three resonance frequencies multiply
o, B, or v and so are less important than the contribution in (24).

While elasticity causes a dramatic increase in the wobble period
for the Earth, this, as Peale [1973] realized, is not the case for the
Moon.

The free libration in longitude has a 1056 day period
(Williams et al., 2001). A variation of T causes an east-west
motion of the tidal bulge, and a delayed response in the bulge
causes damping from the tidal torque term. A linear term for 1
comes through u, in (14) and this is the source of most of the
damping in (17). For damping like exp(-Dt) the damping time is
1/D. The damping for the longitude mode is

D—0497'\/inck—2 (26a)
e v o,

D, =0.091 2—2 yrl (26b)
L
The @, is at the 1056 day period, and ¥ ', with value 228.6x1079,
is a modification of y for third-degree harmonics (Williams et al.,
2001). The expression (26a) is similar to that given by Eckhardt
[1993], and (26b) is 4% different from the numerical expression
of Peale [1976].

The motion of the pole direction moves the tidal bulge in a
north-south direction. The tidal torque term (first on right-hand
side of (13)) is the main influence on damping the 27.296 day
monthly mode. Terms from the derivative of the moment and the
spin acting on the tidal bulge (third term) cancel. The spin on
spin and torque on spin bulge terms are ineffective because the
spin axis stays near the principal axis for the monthly mode. The
damping is given by

k2
Dp =147Cn _Qp R (27a)
_ a3k
Dp =2.35x10 yr. (27b)

2

The Q is at 1 month (27.296 days). The agreement with Peale's
numerical value is excellent. For the DE403 value of ky/Q the
damping time is 3.67x10° years.

For the wobble mode the spin axis is displaced from the
principal axis. The bulges from tides and spin are both effective
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in damping the 74.6 year wobble. The expression for the
damping of the elliptical wobble depends on the ratio E (=2.474)
of the axis of the ellipse, where E2 = (B +35,B')/ o

k
=(% +0.168E)CnQ—2. (28a)
D, =147¢n Qﬁ (28b)

D, =236x10% —2— yr
w=236x107 5= yr, (28¢)

The wobble Q is at 74.6 years. The numerical expression is 17%
different from Peale's. The similarity of numerical coefficients
for the damping of the two pole modes is coincidence.

Fits of the LLR data will be used to estimate Q as a function of
frequency (section 18). Damping times will then be calculated
(section 20).

8. Orbit Perturbations From Tidal Dissipation

The tidal and spin deformations not only affect the lunar
rotation but also perturb the orbit. There are both elastic and
dissipation effects, but only the latter are considered in this
section. Dissipation causes the exchange of energy and angular
momentum between the rotation and orbit. This section first
presents the potentials for deformations and then gives numerical
and analytical expressions for secular orbit changes.

An external body raises tides on the Moon, and those tides
generate forces on the tide-raising and any other external bodies.
The tidal distortion from a tide-raising body (denoted by *) has a
potential energy at an external body of

RS
Vide =ky GM M* B Py(uu*). (29)
The potential energy at the external body from second-degree
spin distortion is
R’ o
—k, M w*2 3,7 Py(uw*). 30

cpm

P, is the second Legendre polynomial, and © is the unit spin
vector. The remaining notation is as before. For dissipation the
phase-shifted or time-delayed variables (except M) indicated with
an asterisk are displaced as seen from the frame of the rotating
body. To calculate forces, the positive gradients of (29) and (30)
are taken with respect to the position coordinates without an
asterisk (sign convention for the point mass potential is plus).
Along the Earth-Moon line the acceleration is inward toward the
Moon.

A rotating frame is natural for computing time-delayed lunar
deformation. Both the orbit motion and rotation are time
delayed. For orbit computations it can be convenient to expand
the vector and scalar radius through first order in the time delay
At using a space-fixed frame

r¥=r-(r-axr)As, (31a)

r*=r—rAr. (31b)

The expression in parentheses is the conversion from space- to
body-referenced velocity.

As seen from the rotating Moon, the Earth's angular and
distance variations cause tides. Here secular orbit changes from

energy and angular momentum exchange are considered. The
orbit is perturbed in two ways by the deformations: directly from
the forces calculated from the gradients of (29) and (30) and from
forces due to the rigid figure of the Moon through the rotational
displacements of its principal axes. To compute the power going
into the orbit, calculatei-VV, where V is the sum of the rigid
figure, tide, and spin potentials. With manipulation the equation
for power is derived.

dv d(lw)

P-vv=—r

a2 a4 (2)

Since the Euler equation (1) permits the derivative of the angular
momentum to be replaced with the torque, this equation may
seem self-evident, but the right-hand side is evaluated in the
frame rotating with the Moon, which is computationally
convenient, and the left-hand side is in the nonrotating frame, as
needed for orbit perturbations. For the time derivative of V one
differentiates the u and r variables but not the parameters with an
asterisk.  Simplifications can be made. Owing to the
synchronous rotation, the power flowing into the rotation rate is
only C/ma* = 1073 of the dissipated power, so the spin potential
and the second term on the right-hand side can be ignored. The
trigonometric series for U =u u; (alr)® were developed for the
computations of section 4 and ese series appear in the rigid
figure and tide potentials. The rigid figure potential is linear in
the U and its time derivative glves periodic terms, but the tidal
potentlal contains products U Ut ij* and its derivative contains
periodic and secular terms. For Earth-raised tides acting back on
the Earth the average power, P, ., depends on the tidal potential
through the constant part of

kGM

Pav_ ( )(3ZUU

Y U, 3 U5). (33)
1 j

This power is drawn from the lunar orbit and dissipated in the
Moon. The average power depends on squared tidal amplitudes
times the frequency. Note that %, Uii=(a/rP . The average
power from solar tides is three orders of magnitude smaller than
the power from Earth-raised tides.

The power is related to the semimajor axis change through the
derivative of the total energy —GMm/2a. The secular semimajor
axis and mean motion changes ( 3Ad/a =-2Ari/n ) are given in
Table 6. The dependence on each tidal Q is explicit. In
calculating the table, power is converted to semimajor axis
change using a mean semimajor axis, rather than an osculating
one. To convert Ad in mm yr~! to average power in ergs yr-!,
multiply by 0.99x1024.

For dissipative effects the torques on the lunar rotation and
orbit, due to displaced second-degree figure and deformation, are
equal in magnitude and opposite in sign (there are ignored figure-
figure effects which are effectively fourth degree). About the
polar axis the constant part of the torque due to tides is balanced
against the constant part due to the rigid figure being displaced
by tides. The average torque about the polar axis is zero. The
tide-caused displacement of the pole direction is a dynamical
rather than static response, and the sum of torques about the body
y axis is not zero. This time-varying torque has a constant
component projected along the line of the equator/ecliptic
mtersection. This component causes the Moon's equator to
precess, but the dissipation-induced shift in the direction of the
constant torque by ¢ from the orbit node on the ecliptic (section
5) causes secular orbit perturbations. Since the torque vector
does not quite lie in the orbit plane, the orbital angular
momentum is perturbed, and since it is not quite aligned with the
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Table 6. Secular Orbit Changes From Periodic Tides?

Argument Period, Ah, Ad, Ap, Ae, A% A®D, Af),
days "cent? mmyr! mmy' t0'Myr!' pasyr!' "cent? " cent?

/ 27.555 205 -302 -4 -705 15 -1.71 2.36
F 27.212 136 -201 -201 2 -601 -0.89 0.34
2D-¢ 31.812 6 -10 0 -22 0 -0.06 0.08
2D 14 765 10 -14 0 -33 0 -0.08 0.11
2¢ 13.777 7 -10 0 -23 0 -0.05 0.08
F+e 13.691 6 -9 —4 -10 -13 -0.04 0.04
2F 13.606 1 -2 -2 0 -5 -0.01 0
F-¢ 2190.350 0 0 -1 2 -2 0 0
2D+¢ 9.614 1 -1 0 -3 0 -001 0.01
Sum for constant Q 373 -550 =212 =795 -606 -2.86 3.02
Sum for Q~1/frequency 394 -580 -218 -854 -623 -3.02 3.22

2Tidal argument and period are at left. The remaining columns are to be multiplied by k,/Q, with Q appropriate to the
tidal frequency. The last two lines give the sum of terms for Q constant and Q proportional to inverse frequency (multiply

last line by k,/Q ).

node, the inclination is perturbed. The angular momentum
component normal to the ecliptic plane is preserved.

For angular momentum exchange between rotation and orbit
the torque rxVV is required. In section 4 the tidal torques were
developed for physical libration calculations but must be rotated
from body-referenced coordinates into the orbit frame. For the
computations of Table 6 the total orbital angular momentum is
proportional to the square root of the semilatus rectum p=a(1—e2),
and the torque normal to the orbit plane gives the change in p.
The eccentricity rate comes from the change in p and a. The
torque component in the orbit plane directed 90° from the node
gives the secular orbit inclination rate.

There are indirect effects of the above a, e, and i rates which
cause the perigee and node precession rates to change. The solar-
induced precession rates depend strongly on the mean motion and
more weakly on eccentricity and inclination. Like the mean
longitude, the node and perigee angles experience tidal
accelerations. The partial derivatives of the longitude of perigee
(®) and node (L) precession rates [Chapront-Touzé and
Chapront, 1988], with the tabulated tidal rates for a, e, and i, give
the accelerations @ and € in Table 6.

The model for the DE403 integration is based on tidal
dissipation, but no core. The DE403 solution effectively sets a
limit to the tidal contribution: Asi = 0.46 " cent~2 and
Ada =-0.67 mm yr-!. Additional rates are Ap = —0.25 mm yrl,
Aé = —0.99x107!! yr~!, and Adi/dr= -0.72 pas yr~!. The
accelerations are A® = —0.0035 and AQ = 0.0037 " cent‘z. The
inclination rate and the last two accelerations are too small to
detect with the present data set. The secular acceleration An is
positive. Tides on the Earth cause a negative secular acceleration
of 26 " cent2. Tidal dissipation in the Moon contributes <2%
of the total tidal secular acceleration. The above eccentricity rate
is 70% of that from the Earth. The product aAe =-3.8 mm yr-1.
With the above A4, lunar tides cause the perigee to increase
3.2 mm yr-! and the apogee to decrease 4.5 mm yr~!. These
changes, along with the secular acceleration, are large enough to
detect with the Lunar Laser data analysis, but other masking
influences on these rates must be considered (see section 16).

Analytical approximations for the orbit changes are useful,
e.g., for evolutionary calculations. For the effects due to the
displaced figure axes the dissipation-induced constant T and lo
terms are needed. Analytical approximations are

k, M mR* f R\3 [ 6¢2 sin(i+]) sin/
2= (=) | —+———— |, 4a
At Oom C (a) [ ¥ 2B (34a)
ky M mR? ¢ RN\3 sin(i+]) sin[
ao= -2 =T () sin@h sinl g

gm C B sin {

The Q is for a 1 month tidal period.

The analytical approximations correspond to the ¢ and F tides
in Table 6. The leading terms in the U series are
Uy=1+3ecost , U,=2e sin 4, and U5 = sin(i+)) sin F.
These may be used with the power equation (33) and converted
to the secular acceleration in orbital mean longitude An:

9 kK M
An = 5 Q2 m ( )
The orbit eccentricity is e (0.0549), the semimajor axis is a
(384,399 km), and the mean motion is n (13.3685 rev yr-!). The
inclinations of the orbit and equator planes to the ecliptic plane
are i =5.145° and I=1.543", respectively. The numerical
evaluation 348 k,/Q " cent™2 may be compared with Table 6. The
semimajor axis perturbation follows from Ad =-2aAn/3n. The
numerical evaluation is Ad = -515 k,/Q mm yr!.
Analytical approximations for eccentricity and inclination
rates follow from angular momentum transfer as before:

272 +sin2(i+D 1. (35)

;( ) ne, (36)

é=7

d_ 3
2

7]
ky M sm2(1+1)
e —Q— — ( ) . 37

sin §

The Q is for a month. The numerical evaluations are
Aé=-7.4x107 ky/Q yr~! and di/dt = -6.0x107% k/ Q. " yr\.

Lunar tidal dissipation extracts energy from the orbit and
deposits it in the Moon. Angular momentum from the orbit keeps
the lunar pole direction offset but does not change the spin rate
(apart from the small secular acceleration An). This is quite
different from the Earth, where the spin energy and angular
momentum power the orbit changes. (Zonal tides on the Earth do
extract their energy from the orbit rather than the spin, but they
affect tidal ri by only ~1%.)
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How does the Moon's spin rate follow the slowly increasing
orbit period from dissipation on Earth and Moon? The rigid-
body axis displaces slightly east of the mean Earth direction, so
torques decrease the lunar spin. This is a rigid-body dynamical
balance of deceleration against torque. The expression comes
from solving the equivalent of (17) with a quadratic time term in
the polynomial for mean longitude L:

T+Aa+3yn21=0. (38)

Assuming fourth and higher derivatives of L are zero, the

displacement in 7T is
R

At= 39

3yn2’
To follow the tidal deceleration of —26 " cent 2 requires a
displacement of only 0.0006". The quadratic (r») term in L
depends on the changing eccentricity of the Earth-Moon orbit
around the Sun as well as the tidal acceleration. The total
acceleration is —13 " cent=2 [Simon et al., 1994], and it requires
only 0.0003" shift of the axis for the lunar spin to follow the orbit
change. The longitude libration follows slow orbital longitude
accelerations as assumed in analytical theories and experienced in
numerical integrations [Bois et al., 1996].

The lunar tidal forces which give rise to the above secular
orbit effects are part of the JPL numerical integration program for
orbits and rotation. The numerical orbit integration does not use
this section's approximations. The time-varying moments of
inertia are converted to the five second-degree gravitational
harmonics, and the orbit perturbations are computed from the
harmonics. This is convenient because perturbations from the
large rigid-body parts of the lunar J, and C,, must also be
calculated. The detectability of these orbit effects will be
considered further in section 16.

9. Computational Model for Core Dissipation

If a liquid lunar core exists, then dissipation at the core-mantle
boundary is expected when the fluid moves at a different rate
than the overlying mantle. This section presents the core model
used in the numerical orbit and rotation integrations and
theoretical computations.

Though motions in the fluid may be complex, we adopt a
simplified model based on the average fluid rotation ®'. The
differential angular velocity between the core and mantle is
A®=® —®. Al a point on the surface of a spherical core-mantle
boundary (radius R') the relative velocity of the fluid is AwxR',
and a viscous force proportional to the relative velocity gives a
torque proportional to R'x(A®xR’) = R?2 Aw- (R-A®) R'. When
integrated over the spherical surface, the total torque is
proportional to A®.

A core dissipation model is implemented in the LLR analysis
software. The equations of sections 2 and 3 are now interpreted
as applying to the mantle. To the large gravitational torques
acting on the mantle in T on the right-hand side of (1) is added
the small additional torque T,

T,=K(0-w), (40)

where K is a dissipation parameter which couples mantle and
core. The ratio of K to the mantle moment C is a parameter to be
fit to data. The core-mantle boundary is taken as spherical, so the
only torque on the core is T . The Euler equation governing the
overall rotation of the core is then

dla) o =T
7 toxle'=-T. 1
For a spherically symmetric core, the core moment matrix I' has
equal diagonal elements C’ (tidal distortions are ignored), and the
above cross product is zero.
dw K '
I:g(m—m). 42)

The moment ratio C/C is an input parameter. For the Euler
equations the torque on the core is in the core's rotating frame,
while the opposite core torque on the mantle is expressed in the
mantle's rotating frame.

If the (laminar) viscous force is replaced with a turbulent force
proportional to the square of the relative velocity, then the total
torque integrated over the sphere is proportional to [A®| A® and
the counterpart to (40) would require an additional factor of |A®].
Yoder [1981] concludes that a lunar core-mantle interaction
would be turbulent. There is further discussion in section 11.
The core-mantle coupling is weak, and ®' shows less variation
than ®. The magnitude of the difference ®' - @ is nearly
constant, and the direction is mostly uniform precession (the
mantle rate varies <10~ n, and the direction varies <103 radians
from uniform precession). The difference between turbulent and
viscous interactions is subtle, and (40) is used in this paper for
data analysis.

The equations of rotation for the mantle and core are
numerically integrated along with the equations of motion for the
orbits of the Moon and planets. The initial time is 1969. Partial
derivatives of the lunar Euler angles and orbit with respect to
K/C, the two initial angular velocity vectors, two sets of initial
Euler angles, two mantle moment differences (C-A)/B and
(B-A)/C, gravitational harmonics, k,, and lunar tidal dissipation
are also integrated so that solutions can be made.

10. Precession of Core

The equator of the observed solid Moon is tilted 1.54° to the
ecliptic plane, and its retrograde precession is locked to the 18.6
year precession of the orbit plane. It can be guessed that any core
will exhibit some analogous precession. The core tilt angle is
unknown. Goldreich [1967] considered viscous, turbulent, and
shape effects and concluded that the coupling of the core to the
.nantle is too weak to align the rotation axes of solid and fluid
parts. Thus the core's equator is likely to lie closer to the ecliptic
plane than to the mantle's equator, but it should exhibit some
precession-induced motion.

To compute the precession of core and mantle, a coordinate
system rotating at the 18.6 year node rate is chosen. For the
torques and angular velocities in the mantle system, the x axis
points toward the intersection of the equator and ecliptic planes,
and the z axis is normal to the equator plane; y completes the
triad. There is an analogous set of axes for the core. The Euler
angles are (1) the angle ¥ from the equinox along the ecliptic
plane to the descending equator plane, (2) the angle 6 between
the equator and ecliptic planes, and (3) the angle ¢ from the
intersection to the lunar zero meridian. Primed quantities are for
the core, and unprimed are for the mantle. For uniform
precession of core and mantle plus uniform rotations of mantle
about the z axis and core about the z' axis §=F, Y=y =Q,
0=0'=0, and 6 =/. Then the core/mantle angular velocity
difference in the mantle xyz frame is
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—¢' sin 0' sin(y'-y)
¢ [cos® sin 0 cos(y'-y) — sin® cos0'] | (43)
@' [ sin 6 sin 0’ cos(y'—y) + cos O cos 0" |~

0-0=

To get the angular velocity difference in the core frame,
interchange primed and unprimed quantities.

For steady state precession the differential equations for the
mantle in the xyz frame are

. (A+B) ., .
-Cyo,sin@+——— ¥ sinBcos 0=T, + K (0-0),, (44a)

0=T,, + K (0-0),, (44b)

0="T,, +K(0-w),. (440)

A, B, and C are now the mantle moments, not the total lunar
moments. The gravitational torque on the mantle is Tg. The
differential equations for the core in the primed frame are
simpler:

-C'¢ V'sin 0 =K (0-00),, (45a)
0=K (@-w),, (45b)
0=K (-, (45¢c)

There are no gravitational torques on a spherical core.

The core equations are solved first. The second and third
components are combined to derive ¢ cos 6 = ¢' cos '. Since the
precession rates of core and mantle are the same, their angular
veloc1ty components normal to the ecliptic plane, ¢cos 6 + V and
@ cos 0"+, are equal. However, the angular velocity normal
to the mantle's equator ®, =@ + Y cos O is different from
that normal to the core's equator ©, = ¢+ cos 0. Define
E=—(KIC' Q) which is positive since the node rate is negative.
Then the solution for the core is

cot(y'—y) = &, (46)
£ tan 0

\]1+§2
¢ = @ cos© \ 1+tan26'. 48)

Since 0 is expected to be bigger than ©', the core must spin at a
rate of ~99.96% of the mantle rate.

To develope the gravitational torques Tg on the mantle in the
xyz frame, analytical expressions for U, = (airy u; u; were first
written in the body-fixed frame and then rotated by ¢. Here the
notation of libration theory is used for the mantle's uniform
precession and rotation, so ¢ = F+1-6+180°, y = Q+0,and 6 = L
The largest terms are linear in sin i and sm I, but third- degree
terms which multiply sin i and sin / by sin2i, sin i sin £ sin?l, and
€2 were included. These small third-degree terms, plus periodic
librations multiplying the torque functions, were evaluated and
combined with the numerical factors of the linear terms. Solar
torques make a small contribution. Only the constant part is
retained below. The best accuracy is needed for the first of the
three components.

tan @' = 47

T, = —231 n? { [0.9758 (C-A) +0.0048 (C-B) ] sin /
+[0.9872 (C-A) + 0.0041 (C-B) ] sin i cos(G-7) }. (49a)

T, = 2n? { -{0.9833 (C-4) + 0.0059 (C-B) I sin i sin(G-1)

8y
+1T[(B-A) sin[-(C-B)sini]}. (49b)
T 5 Ic | |
gz=—3S3 (B-A)n (1:+T sini). 49¢)

Here 1 and ¢ are constant, and S5 = 0.9759.

For the mantle precess1on solution the notation of libration
theory is used with¢p=F, y = Q, and 0 = I. The three constant
torques cause a tilt /, a shift in the equator's node o, and a
constant offset in longitude t:

e Fsm21 (1 ) 5
C(1+§2) 3Syn? 9

2 Fsinl cos I
C(1+£2) 3nZsini(0.9840B+0.0059 o)

sin(o-t) =— (51)
An upper limit can be put on K/C(1+£2) by uising the constant
Io = -0.265" found from the DE403 pure tidal solution. The
K/C(1+E2) limit is 3.4x1078 d-!, while the T limit is —0.021".
Note that the T offset has a sign opposite that for tidal dissipation.

The combination sin / sin F enters the range observations in a
direct manner (see section 17), and the tilt / may be considered a
well-observed quantity. The following relation from the first
component of (43), (44a), (49a), and the core solution links / to
physical parameters:

G=-3 n?sini cos(o-1) (0.9865B+0.0041 a+E), (52a)

Gp,=2.0002 Q ®,+3n? (0.9754 B +0.0048 o + E)

.. EK
2 >
~19982. 02 -2k (52b)
G'
sinf = _Cb , (52¢)

The inclination i = 5.145°, and the elastic combination
E=k,(/3, where  is defined by (25). The combination
B =(C-A)B is the solution parameter which most strongly
adjusts the mantle's tilt when analyzing data, but there are weaker
dependences on Love number, third-degree harmonics, and
EKIC(1+E2). To account for the influence of C3, and Cj;,
replace B and o with the primed quantities defined by Williams et
al. (2001). Also, Williams et al. used a Fourier analysis to extract
I=5553.63" from the DE403 numerical integration of physical
librations. The physical parameters for the numerical integration
were fit to the Lunar Laser data. The above expression is within
1" of the numerical result.

The magnitude of the spin rate difference between core and
mantle is

Fsinl
V 1482
If the core couples strongly to the mantle (E>>1), then its spin

pole nearly lines up with the mantle's pole. For weak coupling
(€<<1), the core's spin pole is nearly normal to the ecliptic plane.

|o'-o|= (53)

11. Core-Coupling Parameter K

The ratio K/C will be fit to data. The core-coupling constant K
depends on fluid dynamics. In this section, interactions from two
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possibilities, laminar and turbulent flow, are investigated. For
these cases, K is a function of physical parameters, including core
radius R', fluid density p’, and kinematic viscosity v.

At the core-mantle boundary a viscous interaction in a laminar
boundary layer gives a stress proportional to v p'v, where the
core-mantle relative velocity v=A®xR"'. Yoder [1981, 1995]
gives

(54

By assuming a core of uniform density, K/C' can be converted to
K/C. From the maximum value given in the preceding section,
set the numerical value of K/C = f, (14£2) 3.4x1078 d~!, where
S, is the fraction of the observed /o offset which comes from
the core. The core radius in kilometers is then
R'= 837 [f, (1+E2)/p1Y4/ vV/® with p' in gmcm™ and v in
cm? s~L. For the limiting case of f.=1 aliquid iron core density of
7 gm cm™? and a viscosity of 0.01 cm? s~! give a 900 km core,
which other lunar interior data indicate is unacceptably large (see
discussion in section 19). As Yoder [1981] concluded, the
viscous laminar interpretation fails for the Moon, and an
alternative must be considered.

At a point on the core-mantle boundary the turbulent stress for
relative velocity v=A®xR' is equal to kp'|v|v, where p' is the
fluid density and x is a dimensionless parameter which depends
on viscosity. (Topographic irregularities on the core-mantle
boundary can give an additional stress.) Integrating the stress
over the surface and computing the torque gives

3
= 7 WKPR? Ao, (55
Concerned about the oscillating direction of the relative velocity,
Yoder [1995] replaced the scalar speed |v| with its maximum

value divided by V2, but that is not done here. With the mean
density of the Moon p and A from (53) one gets

().l c & p 1422 6
R7 “onmR*CF xp'sinl

Using the limiting case for K/C scaled by f,, the numerical
expression for core $ize is then

(1+ 2)3/2 /5
R'=1452km % . 57)

Yoder [1981] used x = 0.002. It is stated by Dickey et al. [1994]
that x is within a factor of 2 of 0.001. Yoder [1995] gives an
approximate boundary layer theory. With some rearrangement
(the x symbol here and that used by Yoder are not the same
parameter) and the addition of &, the functional and numerical
(cgs units) forms for x are

N 0.4 st

In[ 0.4 \/:R'Z Fsin?1]-In[ v (1+2)]

Vk = 04 . (58b)

2InR'+In \/:— In[ v (143 1-21.0

The Karman constant is set to 0.4. This equation is solved
iteratively if the radius is known. The x and R’ equations are
solved iteratively if f, is known; x depends logarithmically on the
core size, kinematic viscosity, and &, so those uncertainties have

modest effects. For a viscosity of 0.01 cm? s71, a 400 km core
gives k=0.00071, while a 300 km core gives k=0.00076. For the
limiting case (f,=1) with the density of liquid iron (7 gm cm™),
the core radius is 421 km. Topography on the boundary would
decrease this core size. For reasonable core sizes the theoretical
K from turbulent interactions exceeds that from laminar flow, so
turbulence is expected as Yoder [1981] concluded. The limiting
core size differs from Yoder's 330 km limit mainly owing to the
smaller value of x and slightly because of his 13% smaller pole
offset.

For core radii between 300 and 400 km the peak monthly
velocity difference between core and mantle is 2 to 3 cm s~}
(R’ nsin I). Since C' is proportional to mean core density times
R'3, the turbulent K/C' depends mainly on k, which is weakly
dependent on core radius and viscosity. The dynamics of the
core depend on K/C'. For the above values of x, the £ is 0.02 and
the core tilt to the ecliptic plane is 2', much smaller than the 93’
mantle tilt. For dissipative effects, Goldreich's [1967] assertion
is upheld. The core's equator intersects the ecliptic plane 89°
ahead of the mantle's equator intersection. The core changes the
mantle tilt by —0.006", which will be compensated during LLR
data fits by changing B and other parameters.

12, Core Differential Equations, Free Modes,
and Damping

Torque on the Moon from the Earth's gravitational attraction
drives the forced librations and causes the mantle's free librations
to oscillate about the forced state. The dissipative core-mantle
interaction causes slow damping of the three periodic free
librations, just as damping is also caused by tidal dissipation
(section 7). Moreover, the core is capable of its own rotational
motion, so there are additional free modes. These are damping
modes, not oscillatory motion. The development of the core and
mantle differential equations for rotation, the free modes, and the
damping are this section’s subjects.

First, the coupled differential equations for the longitude
librations are written for mantle and core. The uniform
precession of mantle and core introduces functions of 7, I’ (mean
0'), and §&. Small nonlinear terms are dropped. The mantle
equation is

2438 ynl L(( , cos/ l.:sinzl
438yt o \T- T S+ g2

=f,. (59)
The core longitude libration T' contains the periodic terms in
y'+ @' The mantle moment C is used for y=(B-A)/C. C'is
roughly three orders of magnitude smaller than C. The Fsin?/
term gives rise to the linear contribution in the constant offset.
This was previously computed (equation (50)) and will not be
considered further here. Small nonlinear terms are also dropped
in the core differential equation.

2 K (. . cosl
o \T T T cosr

(60)

Since the core is assumed spherical without any gravitational
torque, there are 1' derivatives but no T term. Mantle
periodicities are driven by core periodicities through terms
factored by K/C". Since C/C is small, the coupling terms will
influence the core more than the mantle. The ®'- ® component
appears different in the two differential equations because two
frames are used. The ratio cos // cos I' is computed from
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cos? [ . sin? [ ”
cos? =17 e 61)

The & = ~(KIC'Q), defined in section 10, depends on the
(negative) node rate.

The forcing term for the mantle comes from the
U12=(a/r)3 u;u, function factored by 3yn? and the 0.9906
numerical factor of (16), but the forcing function on the right-
hand side of (59) has the linear T term removed to give the
35, v n?1 on the left-hand side. The free librations are solutions
of the mantle and core differential equations when the right-hand
side of (59) is zero.

To investigate the free libration modes, substitute
T=aexp(ivt) and T = a'exp(ivt) into the linearized differential
equations. Two linear equations for a and a’ result. The complex
determinant of the coefficients of @ and a’ is

K K sinZl
= - 2 2
=-v [(3Syn -V )+CC’1§2
+iv[(3S3yn2—v2)—-v2—] (62)

The inverse 1/ A, is A / A, A%, where the asterisk denotes the
complex conjugate:

. [ K K sin’l 2
AAr=v (3S3'yn -v? )+ It E_,2

K12
+v2[(3S3yn -v )E—VZE]. (63)

To find the free libration frequencies (real part of v) and
damping (imaginary part) for the longitude modes, find the roots
with the determinant (62) set to zero. The zero root means that
the spherical core can be rotated by an arbitrary angle. While an
exact solution of the remaining cubic is possible, approximate
solutions are presented here. To guide the approximations, the
sizes of parameter combinations are needed. The combination
(37)Y2= 0.026 is well determined. For a small core,
K/C'>K/C. For turbulent coupling K/C’n = 104, which may be
increased by boundary topography. From the limiting case,
K/Cn £1.5x1077. So for the lunar case the combinations z ( 3y
W2 55K/C'>> K/ C are well separated.

One of the roots of the cubic is near iK/C'". If the core rotation
rate is not at the steady state value of (48) plus forced librations,
it will damp very nearly as exp(~K#/C’). This could have been
guessed from the form of (42) and (60). For a homogeneous iron
core, damping times of 140 years are expected for turbulent
coupling. Topography would decrease the damping time.

The (mantle) free libration frequency for longitude, with
period 1056 days, comes from the square root of 3S3Yn2. For
the Moon the free libration frequency is much larger than K/C’,
so the first bracket in (62) dominates the frequency. If the
reverse were true, the free libration frequency would be
determined most strongly by the second bracket and the
¥ =(B-A)/C would be replaced by (B-A)/(C+C’). The core would
rotate with the mantle. In general, there is a slight dependence of
the free libration frequency on the strength of the core-mantle

coupling.
The damping for the mantle free libration mode is
L™ 2cqa+g?y’

where §, = K/C'n \] 38,7 is the ratio of core damping constant
to free libration frequency. For turbulent coupling, £, = 0.003

27,947

(weak coupling). Then from the DE403 limiting case the core-
induced damping time (1/D,) must be >1.6x10° years. The
above damping expression agrees with Peale [1976].

The effect of the core on the latitude librations is more
difficult. The Euler equations for the mantle (equations (1) and
(40)) and core (equation (42)) are not in the same reference
frame. The core differential equation can be expressed in the
mantle body frame

dT ")
dt

where I'®' and the angular velocity difference are also in the
mantle frame.

The differential equations for mantle and core rotation are
nonlinear owing to the x operation as well as terms in the
forcing torques. Except for the precession term of section 10,
nonlinearities are small. A linear treatment suffices in most
cases, but nonlinearities can be treated as additional forcing terms
during an iteration. Analogous to the p, and p, which describe
the motion of the mantle's pole, the core parameters p; and p, are
defined as

K
+mxI‘m—-—(m ), (65)

py= -sin® sin(Q+y-y'), (66a)

py=—sin® cos (p+y-y'). {66b)

This definition removes the rate difference between the core and
mantle systems from the argument.

The difference in angular velocities is needed in the mantle
coordinate frame. Some small nonlinear terms are discarded.

.sin?] P, , . sin?1 1+cos /
P F st cosT TPV 2 cos Tt P2 2 cos T
.sin® ] P , . sin®l  l+4cos]
cos It cosT P27 2cos ' P12¢cos I
. sin2] . cos!

1+E2 Yy

o-o=]| -,

T

67
The linearized differential equations for mantle and core rotation
are

K
Py + 03 (1-0)p) +0y® py + 5cos I (@ - 00) ) =f,, (68a)

»e » K T
—p, + oy (1-B)p, -4 B 0,2 p, + o c0s [( @y~ ;) =, , (68b)

ﬁ§+[0)3+(1-0081)i'"]i7;—p§ (1—cos ) F o,
K 2cos I’
C’ 1+cos /

(0,-0,)=0, (69a)

—p{ +[ 0 +(1—cos I) F1 p5 + p} (1—cos I) F o,

K 2cos I’
C' l4+cos [ (0y-@,)=0. (69b)

The mean spin rate component ®, =F+QcosI=n. Terms of
order sinZ/ have been retained in the core differential equations
since the core rotation rate, @2 = w2 —F2 sin?/ (1+£2) from
section 10's steady state rotation, is slower by such an amount.
There is some conflict between the objectives of linearity,
retaining sin?/ terms, and the wish to simplify the core
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differential equations by removing small terms. In (69a) and
(69b), terms of order éz sin? I have been eliminated, so terms of
order sin? I’ are not complete.

To get the free libration frequehcies and damping, zero the
forcing functions on the right-hand sides and substitute four
unknowns multiplying exp(ivt) for the mantle and core p
parameters. The matrix multiplying the four unknowns is 4x4,
and setting its determinant equal to zero gives an eighth degree
polynomial for the free frequencies and damping. So
approximations are in order (free libration frequencies
>K/C'>>K/C). A first approximation is to solve the core and
mantle differential equations separately, eliminating core
variables in the mantle equations and vice versa. In this
approximation the motion of the mantle's pole causes interaction
with the core, but the mantle does not sense any response of the
core (in the longitude damping, the response of the core shows as
the 1+J§L2 in the denominator). Similarly, the core does not sense
the mantle's response.

The complex 2x2 core determinant may be written as

K .
Ac=[v2—co32—(EK,)2—2ivE 10v2-(l—cos D2 F%]. (70)

Setting it equal to zero gives four roots: *w; +iK/C’ and
+(1-cos ) F. The first pair of roots means the core's pole of
rotation could be tilted differently in space from that computed
for core precession plus forced libration, but damping will move
it toward the latter state. The K/C' damping parameter applies.
The second pair of roots reflects the slower core rotation rate
through the arguments in the definitions (66a) and (66b) based on
the uniform solution of (48) and (61). A sphere does not have a
unique principal axis, and there is no damping.

The 2x2 mantle determinant is approximately (smallest terms
discarded)

Am=v“—v2u)32(1+3B+aB)+4aBm34
K .
—iv z(2v2-2Faysinfl-a e -4 Ba?). ()

The real part corresponds to the classical solid-body dynamics,
and the imaginary part contains the dissipative terms. There are
two free modes for the mantle pole. One is an 81 year free
precession in space (frequency = 3Bn/2 ), and the other is a
75 year wobble of the pole as seen in the rotating frame
(frequency = 2n(aB)/2 ). Dissipation affects these periods very
little. A coupling-dependent shift of frequency analogous to the
longitude mode is expected but does not come from the 2x2
approximation. The damping of the mantle's free precession is

K

~ . 72
Pp C(1+82) 72)

The parameter §p = 2K/3PBnC'is the ratio of the core damping
to the free precession frequency. The dependence on &_ does not
come out of the 2x2 treatment. It requires additional terms from
the 4x4 matrix. For turbulent dissipation, & = 0.1 is the strongest
coupling of the three mantle modes and the 18.6 year forced
precession. Topography at the core-mantle boundary could
strengthen the coupling. The core-caused damping time is
>8.1x10% years. Peale's [1976] analytical expression is very
complicated, and his numerical damping time is several times as
large.
The damping parameter for the wobble is

D, = X [ 2[3+i + sin’ /
wTC 2 Pe

(73a)
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D, = 2.19x107 ~

(73b)

From the limiting case the damping time is 23.7x107 years. The
above wobble damping does not agree with Peale's [1976]
stronger result. The difference appears to arise from the oxI'e’
term needed to express the core differential equation in the
mantle frame. While there is a §, = K/C'n, it is very small,
Yoder [1981] gives numerical values for damping time but not
analytical expressions. For all three free modes the values are
four to five times larger than this paper's values.

To compare damping from turbulent core dissipation and tidal
dissipation, consider cases with equal pole offsets. The core is
more efficient than tides for damping the free precession. For the
other two modes the core damping lies between the tidal cases for
constant Q and Q~1/frequency.

While it is convenient to refer to core and mantle modes, there
is a small influence of the classical free librations on the core,
and there is a small reflection of the core damping modes in the
mantle rotation. For the mantle modes the & parameters
determine the core/mantle amplitude ratio. For the precession
mode, with the largest coupling, that ratio is ( E,g -8, )/ (1+& g).
So the core response is nearly orthogonal in phase when gp is
small, but the core and mantle rotate together as ﬁp approaches
infinity.

The core mode damping is very fast compared to the mantle
damping. The damping of the three mantle free modes is too
slow to allow K/C to be determined. In principle, the core-
damping modes have a small influence on the mantle and if
observed would be sensitive to X/C". The expected mantle/core
amplitude ratios are very small, and the short damping time
(140 years for turbulent coupling) would make these effects more
transient than the mantle modes. To be observable in the mantle
rotation, the core modes would need strong stimulation in the
recent past.

13. Core Forced Terms

Gravitational attraction acting on the mantle's figure ultimately
drives all forced terms. The feeble interaction between the core
and mantle induces weak mantle periodicities, orthogonal in
phase to the main terms, and small core rotation terms. These
small forced terms are computed in this section.

In differential equation (59) periodic orbit terms and nonlinear
terms (orbit times libration and libration times libration) force the
system. For the longitude librations the nonlinear effects are
small except for the constant offset (B term in (50)). The forcing
function depends on a sine series for the largest terms. Here a
periodic forcing function with frequency v is represented as
3yn2Hexp[i(vt+phase)]. The solution for the libration
amplitudes for mantle, T=a expl[i(vi+phase)], and core,
T = a’ exp[i(vr+phase)], gives complex functions. For a sine
forcing function, the real and imaginary parts of a and &'
correspond to a sine and cosine, respectively.

Presented below are both the full solutions and the
approximate solutions to (59) with the foregoing periodic form
for the forcing function and solutions. As with the free libration
calculations, the inequality n (37)"2 >>K/C'>>K/C guides the
approximations. The solution for the sine (in-phase) mantle
libration includes both the conventional solid-body response and
the core effects (with K). It is very close to the solution without
dissipation, and the coefficient of a periodic sine term is
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as=3YA—nZA{Zﬁ {(3S3yn2—v2)[v2+(§)2]

KK cos?-l 4a)
-v? C C' cos?
g - %_ (74b)
S (38;yn%-v?)
The cosine mantle coefficient is

K 3yn?HV? 2 sin?1

a,=-¢ A, A¥ [v +(C) ez 1 (75a)
K a. v

a 5 (75b)

cTTC (38,yn2—v2) (1+8)

The ratio §, = K/C'v measures the strength of the coupling
between core and mantle at the forcing frequency. Cosine terms
which have frequencies either much lower or much higher than
the resonance frequency are suppressed, but a response is favored
near the resonance. The core-caused cosine terms, factored by
the small quantity K/C, are very much smaller than the
conventional solid-body sine terms (equation (74b)), but they are
larger than the small change in the sine terms due to the core.

The mantle longitude series for the core effects is given in
Table 7. The two largest planetary terms are too close to the
resonance to separate from the free librations when fitting data.
The remaining periodic terms are too small to detect. All of the
periodic terms in Table 7 have weak coupling between core and
mantle for the turbulent value of K/C’. For the annual term, the
largest conventional longitude term, & =0.001.

The core's sine and cosine forced longitude coefficients are
K 3yn?Hv? cos]

= 2_y2 =
4= c A, A¥ cos I’ [(3S3Yn v

K
-v2 E]’ (76a)
2
Vas
ta S 76b
a; 1+E2 (76b)

. K 3yn®HV? cos/ —
4="C A A*  cosT’ [(3537" -v7)
K
C

K sinY/ 77a)
C 1482 7
VaS
a' = 77b
. 1+E2 (77b)

For [€,| < 1 the cosine term is larger than the sine term. For
increasingly larger £, the amplitude grows and the phase rotates
until, as [€ | approaches infinity, the core couples strongly to the
mantle and they rotate together. Lower-frequency forced terms
couple core and mantle more strongly than higher-frequency
terms.

In the conventional longitude librations there is a 14" Venus-
induced term with a 273 year period. The turbulent &, is
estimated to be 0.3, so the core should have a long-period term of
at least 4". Unfortunately, the influence of this term on the
mantle librations is unobservable. For turbulent coupling the
annual core term should be ~0.1", and an 18.6 year term is ~0.2".

Table 7. Maximum Terms in Longitude Libration Due
to Dissipation From a Weakly Coupled Fluid Core?

Argument Period, T
cos,
days mas
’ 365.260 02
2F-2¢ 1095.175 1.3
3E-5M-59° 1069.313 -0.2
23E-21V+2D-#+15° 1056 415 3.0
V-2E-D+2/-F+257° 1056.345 32
0 o0 -21.1

3All terms use cosines of arguments. Angular units are
milliarcseconds (mas) Planetary mean longitudes for Venus,
Earth, and Mars are denoted V, E, and M. Core parameters are
KIC(1+E%) = 3.4x1078 rad 4" and C/C = 1.7x1073, with & = 0.022.

Since the coupling is weak for all of the significant mantle
longitude terms, and the LLR data analysis detects the resonant
frequency through the coefficient a_, the y defined with the
mantle moment C is much closer to the measurable quantity than
if it had been defined with the total moment C+C' (the difference
in the numerator is the same with a spherical core). Holding the
mantle C constant makes the differences of sine terms too small
to list in Table 7. For the tidal acceleration, and the exceedingly
long period (>10,000 years) "secular” terms in longitude, the core
should couple strongly to the mantle. The 7y in (39) should use
the total moment, but the induced displacement of longitude
libration is small and not directly observable. For secular terms
in longitude, the core acceleration matches the mantle
acceleration, but the core rate is different by —nC'/K. There is no
obvious way to use the secular terms to learn about the core.

The more complicated latitude terms are done as
approximations. From the 2x2 mantle matrix (71) one gets
forced terms for p; (complex coefficient a) and p, (complex b).
The forcing functions on the right-hand sides of differential
equations (68a) and (68b) have been set to X exp[i(vt+phase)]
and —iY exp[i(vt+phase)]. This choice makes X and Y real for the
largest forcing terms (X with a cosine and Y with a sine), and it
associates the real part of a and b with a cosine and the negative
imaginary part with a sine. The X forcing function comes from
3an? 0.9906 Uy;cosl, and the Y function comes from
-3Bn20.9906 U, cos I with the linear 3Bn2p, moved to the
left-hand side of (68b).

) Ko
ilve,(1-B)-i ¢ Fsin? 11X

a=

Am
i[v-aw,? —lV_ 1Y
- AL , (78a)
vi-4B o,? -;v— 1X
b= AL
K . .
[vos(1-a)-ig Fsin?I1Y
+ . (78b)
Am
Both numerator and denominator are complex. The main

dissipation terms are factored by K/C, analogous to the longitude
case. From the experiences with forced longitude librations, free
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Table 8. Maximum Terms in Latitude Librations Due to
Dissipation From a Weakly Coupled Fluid Core?

Argument Period, P 28 Io [
cos, sin, cos, sin,
days mas mas mas mas
F 27.212 2652  -265.0
F-{ 2190.350 -14 0.8
0 o0 —265.6 -59
¢ 27.555 -3.6 3.7
2F-¢ 26.877 1.5 ~-1.5
2F 13.606 -0.6 0.6

3The latitude physical libration parameters are p,, p,. p, and /c.
Angular units are milliarcseconds (mas). Core parameters are
K/C(1+&%) = 3.4x108 rad d”! and C7C = 1.7x1073, with & = 0.022.

librations, and the solution in section 10 it can be guessed that
core response would put 1 + &3 in the denominator, where
£, = KIC(|v}-n).

Table 8 gives the core-induced latitude series. It is dominated
by the term for pole offset (the more elaborate solution of section
10 is used for this term). Most of the 2190 day term is from a
nonlinear contribution. Table 8 also gives the approximate
conversion to p and /G parameters.

Of the forced terms in Tables 7 and 8, only the large pole
offset term is easily observable. The forced physical librations
are mainly sensitive to K/C, and the sensitivity to K/C’ (or &) is
very small in the tables.

14. Sidereal Terms

The Moon's orbit precesses along a plane which nearly
coincides with the ecliptic plane, but this mean plane of
precession is tilted by two causes. The oblateness of the Earth
induces an 8" tilt toward the equator, and the resulting plane is
commonly referred to as the Laplacian plane. The second cause
is the motion of the ecliptic plane. This induces a 1.5" tilt
because the orbit does not quite follow the ecliptic motion. The
two tilts are oriented differently. The &, in the latitude solution
of the preceding section is infinite for a term at the sidereal
period (27.322 days in the rotating frame or zero rate in the
inertial frame), and the solution there should not be used for such
calculations. Both tilt effects are very close to the sidereal rate;
the first case differs by the 26,000 year precession of the Earth's
equator.

The effect on librations of a fixed plane for orbital precession
is intuitive. The rotating mantle and core precess along the same
plane as the Moon's orbit whether that plane is the ecliptic plane
or not. There are several reasons that this is not quite true for the
Moon: the Sun is still in the ecliptic, there are figure-figure
torques on the Moon from the Earth's oblateness, and the ecliptic
plane is moving. The torques from the Sun will be ignored
compared to the Earth's, and the figure-figure effect is 1% of the
8". As Eckhard: [1981] showed, the effect of the ecliptic motion
is sizeable, 6" in addition to the 1.5", because the differential
equations must be modified.

The differential equations for core and mantle can be written
and solved in an inertial frame. The solution has a simple
explanation. The pole of the ecliptic plane moves 0.470 " yr-1,
and the axis of that rotation is at ecliptic longitude I1 = 174.87" at
J2000 and moves slowly (8.7 " yr~!). Both mantle and core

precession nearly follow this motion. The solid-body rotation
fails to follow by an angle given by the 0.470 " yr-! rate divided
by the free precession frequency (0.47 " yr~' /2n/ 81 yr = 6.0").
For the steady state solution both spin axes move by the
0.47 " yr1, but there is a separation between the two axes such
that the turbulent torque causes the core's axis to follow the
motion. The core rotation axis is pulled along by the mantle
owing to the core-mantle interaction. The core is fully coupled to
the mantle, and the appropriate expression for the 6" term is
0.47 (B+C')/ 1.5 n(C-A). The phase is L — IT + 90°, where the
orbital mean longitude is L=F+Q. The classical latitude libration
terms have weak coupling between core and mantle and are very
sensitive to P =(C-A)/B, so the sidereal term associated with
ecliptic motion has independent information on the core moment
C". The core-sensitive terms are

C
Ap,=6.0" Vol sin( L - 84.87°), (79a)

v

C
Ap,=6.0" Yol cos( L -84.87"). (79b)

The expression for the ecliptic-motion-induced separation
between the core and mantle spin axes is 0.47 " yr~! C/K. For
turbulent coupling the spin axis of the core lags the secular
motion of ecliptic and mantle poles by ~1', while it also precesses
with a 2' angle.

For turbulent coupling, section 11's limiting case of a 421 km
iron core gives C'/C = 1.7x1073. This gives an upper limit of
0.010" for the sidereal core signature. The two closest terms (in
frequency) are the forced precession, with an 18.6 year beat
period, and the free precession, with an 81 year beat. There are
solution parameters corresponding to all three frequencies, and
the 81 year beat period will weaken the determination of C". So
the term is large enough to be useful, but the separation of
parameters will be a challenge. Increasing data span will very
much improve the direct determination of the core moment. All
of the terms in Tables 7 and 8 are orthogonal to the major (solid-
body) terms of the same period. This can be an advantage when
solving for K/C. The core-induced sidereal term does not have
this advantage.

The tidal dissipation Tables 3 and 4 have a sidereal term, but it
was too small to include in Table 2. Split into the two phases and
expressed in arc seconds, the two components are

ky

Ap, = ) [0.01 cos L+0.18 cos(L-84.87°)], (80a)

Ap, = kaz [0.01 sinL+0.18 sin(L-84.87°)1]. (80b)

The Q is monthly. The maximum for the tidal dissipation terms
is 0.2 milliarcsecond (mas). This is much smaller than the
maximum core effect, has different phase, and should be
calculable from a monthly Q. The tidal elastic effect proportional
to k, is orthogonal to the tidal dissipation, is several mas in size,
and is more likely to correlate with C".

An additional effect, core-mantle boundary oblateness, has not
yet been investigated. Given this unknown, the two sources of
sidereal terms with two phases, and the 81 year beat period, the
sidereal terms are not pursued further in this paper. They offer a
very interesting future opportunity for direct determination of
core moment.
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15. Orbit Perturbations From Core Dissipation

The gravitational attraction from a spherical core acts like a
point mass and does not directly perturb the lunar orbit, but there
is an indirect effect. The core-induced constant shifts in libration
T and © (section 10) displace the mantle's principal axes from
what would otherwise be their equilibrium orientations. The
displaced figure of the Moon then perturbs the orbit. The effects
are small, and leading-term approximations are used in this
section. As is the case with tidal dissipation, the orbital
perturbations are computed by the numerical integration
programs from the accelerations. The approximations of this
section do not enter those programs.

Orbit perturbations from a displaced figure were also
considered for tidal perturbations (section 8). The important
effects are in sernimajor axis a, mean motion 7, and inclination i.
The computation can proceed in a manner similar to section 8
using the T and o offsets of section 10. Changes in a and n are
also related to the power drawn from the orbit and deposited in
the core:

P=-K(®-o), (81a)
K P sin?1
ave =~ 1+§2 : (81b)

The secular mean motion and semimajor axis changes are
calculated (approximately) from the mean power. The mean
motion change is

Aﬁ:c(%@ ;n%z (1+%) (§)Z3Fsin2 I, (82a)

K 2
Ar=1.11x108 ————— "cent?. (82b)
C(1+&%
The § is based on the node rate. The latter equation uses K/C in
radians d~! to give " cent"2. The limiting case gives an upper
limit of 0.038 " cent™2 from the fluid core. The influence on the
semimajor axis comes from Aa = -2 a An/3 n, so the relation is

K ¢ m R\2
q = - T 5 —_— — . 2
A== (148 mR (‘+M) (a) 2asin?], (83a)
Ad =-1.64x103 K - (83b)
=-—]. — m .
¢ eoawey ™

Again, K/C is in radians d! to give m yr~!. For the limiting case
this is —0.056 mm yr-1.

In the first approximation there are no torques perpendicular to
the ecliptic plane, but there are torques normal to the orbit. The
semimajor axis and semilatus rectum expand at the same rate so
the eccentricity rate is zero. There is also a torque in the orbit
plane 90° from the node which gives rise to an inclination rate

di K c mY ¢ R\2 sin? [
;1_’=-C(1+§2) mR2 (1+M)(a) sini’ (842)

di K

—=—49 ——— "yl 84
&= camm (84b)

The last equation uses K/C in radians d™! to give inclination rate
in " yr-!. The rate for the limiting case is —1.7x1077 " yr-!. This
is too small to detect. The core influence on node and longitude

of perihelion acceleration is about an order of magnitude smaller
than for tidal dissipation for the limiting cases.

For the same pole offset, tidal dissipation in the Moon
provides an order-of-magnitude larger secular change of
semimajor axis and mean motion than does core dissipation.
Also, the tides change eccentricity, while the core does not. As
with the lunar tides, the changes are opposite in sign to those
from tidal dissipation on the Earth. The fluid-core-caused
changes in a and n are three orders of magnitude smaller than
rates caused by tides on the Earth. The differences in orbit
perturbations from the three offer an opportunity to distinguish
between them. This will be discussed further in the next section.

16. Separation of Orbit Perturbations

Can the secular rates of orbital semimajor axis, mean motion,
and eccentricity be used to separate the contribution from lunar
tidal and core dissipation? For semimajor axis and mean motion
rates, tidal dissipation on the Earth is two orders of magnitude
more important than lunar tides and three orders of magnitude
more important than lunar core effects. In principle, one can
subtract the Earth influence from the measured orbit changes to
get the lunar effect. The measured pole offset gives a linear
combination of the two lunar influences, and the total orbital
effect depends on their proportion.

To the secular acceleration 7, the Moon contributes between
0.038 " cent™2 (all dissipation in core) and 0.46 " cent 2 (all
dissipation tidal). Table 9 gives the secular acceleration and
eccentricity rates computed from tides on Earth. Tidal
components are deduced from artificial satellite and Lunar Laser
Ranging. The LLR model has Love numbers and tidal time
delays for three frequency bands: semidiurnal, diurnal, and long
period. The semidiurnal and diurnal time delays are LLR fit
parameters. The DE403 lunar ephemeris was generated in 1995,
and its secular acceleration from Earth and Moon dissipation is
-25.64£0.4 " cent2. The predictions of tidal acceleration from
the artificial satellite laser ranging (SLR) deduced tides are
systematically ~1 " cent~2 lower (in magnitude) than the LLR
values. Half of this difference is understood. The SLR
calculations of lunar acceleration do not correctly account for the
finite mass of the Moon [Williams et al., 1978], which requires a
correction factor of 1+m/M = 1.0123. A modified Kepler's third
law (used in (16a)) contributes an additional factor of 1.0028
(using a=384,399 km from the average inverse distance). These
two corrections increase the magnitude of the SLR values by
0.4 " cent™2. A review of the conversion of the LLR Earth and
Moon tidal time delays ton shows that the published (negative)

Table 9. Mean Motion and Eccentricity Rates Computed
From Four Models of Earth Tides?

Tide Model n, e,
“cent2 107! yr!

Reference

GEM-T1 -2527 1.83 Christodoulidis et al. [1988]

GEM-T2 -2494 1.68 Marsh et al. [1990];
Dickman [1994]

Cartwright-Ray -24.88 1.59 Ray [1994]

LLR DE403 -26.10 135 this paper

3The first three models depend in whole or in part on multiple tidal
components deduced from artificial satellite laser range data analysis.
The last corresponds to the model used in the lunar and planetary
integrator with two adjustable tidal parameters fit to LLR data.
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values of 7 need to be corrected by +0.15 " cent™2. Earth tides
account for +0.10 " cent2, and lunar semimonthly tides in
Table 6 add 0.05 " cent™2. (The Dickey et al. [1994] value of
i = —25.8820.5 " cent 2 becomes —25.73+0.5 " cent™2.) Adding
dissipation in the Moon to Table 9 does not improve the
SLR/LLR disparity. Because LLR is sensitive to the total secular
acceleration while SLR senses only Earth tides, lunar tides
increase the SLR/LLR spread more than core dissipation. At
present, knowledge of tides on the Earth is not sufficiently
accurate to extract the lunar contribution to the observed secular
acceleration from the difference between SLR and LLR values.

The situation for eccentricity rate is more hopeful. The Moon
contributes between —1.0x10~!1 yr~! (all dissipation from tides)
and O (all dissipation in core). The contributions from Earth and
Moon are close enough in size that eccentricity rate is useful for
learning about the Moon's interior. An eccentricity rate of
—1.0x107!! yr~! changes the perihelion distance by 3.2 mm yr-!.
The LLR determination of eccentricity rate should improve with
increasing data span.

The internal accuracy of the determination of the dissipation-
induced 7 is good. However, range perturbation exceeds 15 m
during the data span! But the present uncertainty of tides on
Earth does not permit this to be used for the lunar problem.
Eccentricity rate is a much weaker signal, accumulating a few
centimeters in range during the data span, but is easier to correct
for tides on Earth. At present, the lunar rotation provides a direct
test of lunar dissipation without corruption from external
influences. Since the rotation effects are bounded while the orbit
effects are secular, the orbit perturbations may assume greater
importance in the future.

17. Determination and Separation
of Lunar Variables

This section discusses how the lunar rotation terms affect the
Lunar Laser ranges. It also discusses how the solution
parameters separate from one another. The data analysis program
uses rigorously derived partial derivatives of range with respect
to the solution parameters, but for illustration, approximations are
used.

The range vector R from an observatory on the Earth to a
retroreflector on the Moon is

R=r-R +R.. (85)

The three position vectors are geocentric Moon r, the geocentric
ranging station R, and the selenocentric retroreflector position
R,. Orientation matrices for the Earth and Moon are used to
transform between space-fixed coordinates and body-fixed
coordinates. When accurately calculating the round-trip time
delay, two R vectors are needed. One "leg" uses the transmit
time and the lunar bounce time, while the other uses the bounce
time and receive time. Since R /r=1/60 and R /r=1/221, a first
approximation for the range projects the two smaller vectors
along the Moon to Earth unit vector u = -r/r:

R~r+w(R-R)). (86)

At a given time, the difference in range to different
retroreflectors depends on the reflector coordinates and the lunar
orientation with respect to the Earth-Moon vector. In the lunar
body-referenced frame, u is approximated by

1

- — 2
uy =1-

1
w? — 5 uy, (87a)

uy=sin[(2esinl)-1], (87b)

uq = —sin i sin F - sin(+p) sin(F-o) . (87¢)

The direction of this vector is composed of the optical librations,
due to the orbit (eccentricity e and inclination i terms), and the
physical librations, due to rotation (/, T, p, and 6). The e and i
terms are leading terms of series for ecliptic longitude and sine
latitude, respectively. See Eckhardt [1981] for the exact
expressions. The selenocentric coordinates of a retroreflector
project into the range direction as -uwR,, where R = (X, ¥, Z) in
the body frame. The main sensitivity of the range to the
longitude libration comes from Y u,, and the sensitivity to
latitude librations comes from Z u,. For the four retroreflectors,
1339<X<1653 km, —521<¥Y<803 km, and -111<Z<765 km
[Williams et al., 1996]. Figure 1 shows the retroreflector
locations. At the lunar surface a selenocentric angle of 1" is
equivalent to 8.4 m, but the projection into the range direction is
<4 m for the retroreflector positions. Thus a few centimeter
range accuracy is sensitive to physical librations at the =0.005"
level, and numerous observations will improve on this during a
solution.

In the range data analysis program a partial derivative of the
range (time delay) is required with respect to each solution
parameter (P) for each leg of the round trip. For lunar parameters
these partials are ﬁ-(ar/aP+8Rl/aP), in the space-fixed system.
The orbit is separate from the orientation of and location on the
Moon. For illustration, in lunar body-fixed coordinates the
partial of the —u-R_ term is ~u-dR /0P — R :0u/dP. The oR /OP
includes partials with respect to the three selenocentric
coordinates for each of the four retroreflectors plus partials for
two Love numbers 4, and /, for tidal displacements. The partials
dR /oP come from the geometry and are not integrated. They are
generated and projected into the range direction while processing
data. The sensitivity to the reflector coordinates comes through
the orientation of the Moon with respect to the Earth-Moon line.
The tides vary with time, depend on location, and project
according to variable orientation. A numerical integration
program generates the partials of orientation du/dP and orbit
or/oP with respect to dynamical parameters. These dynamical
parameters include P, y, seven third-degree gravitational
harmonics, Love number k,, tidal time delay Ar equivalent to a Q
inversely proportional to frequency, K/C, rotation initial
conditions for solid body and core, and lunar J,. The projection
into the range direction at the observation time 1s done when the
range data is analyzed. Except for J,, these dynamical
parameters are most sensitive through the orientation. To
distinguish Q values at different frequencies, analytical partials
Ow/oP are generated and projected at the time of data analysis.
On the basis of the series solutions of section 5 and Tables 1 and
2, analytical partials are included for coefficients of five out-of-
phase terms: 27.2 days and 2190 days for latitude librations, plus
annual, 1095 days and 206 days for longitude librations. Since
the p, and p, parameters are coordinates rather than angles, the
analytical latitude partials are implemented using their equivalent
terms for constant 6 and 27.555 day variations in p and ©.

During solutions, how detectable and separable are the
dissipation effects through lunar orientation? Except for the
sidereal term, the dissipation terms are orthogonal in phase to the
terms produced by the second-degree figure (triaxiality). There is
little difficulty in separating orthogonal terms, even when they
have identical periods, provided that the data span is long
enough. Of the seven third-degree harmonics, three produce
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o

Figure 2. Location of the three Apollo retroreflectors and the
two French reflectors on Soviet Lunakhods. The spread of
locations aids separation of parameters during solutions.

terms orthogonal to the dissipation terms, and four (Csq, C3;, S5,
and S,3) produce terms that are phased like dissipation. The
spherical harmonic functions for C,4 and C;, are even in
longitude and odd in latitude, while those for S5, and S;; are odd
in longitude and even in latitude. The resulting libration series
are dissimilar for the two pairs [Eckhardt, 1981; Moons, 1982b},
but the paired members will correlate with each other. It is the
separation of S3, S35, K/C, and At (nk, At= k,/Q for monthly Q)
that needs further discussion.

Because of the good geometric spread of retroreflectors
(Figure 2), the physical libration latitude and longitude
components are distinguishable from each other and from the
orbit. Table 10 displays the larger partial derivatives for 3|, S35,
K/C, and two tidal dissipation models (@ constant and
Q-~1/frequency). Eckhards [1981] and Moons [1982b] are the
sources for the two harmonic columns; this paper provides the
dissipation columns. The constant in T is not shown because it
contributes nothing to the separation when reflector longitude (or
X and Y) is adjusted during the solution. The 7 partials are

tabulated because they are the physical libration part of u, in
(87b). Instead of u;, the similar, but simpler, p; — Tsin/ cos F is
used (Moons tabulates p; and p, rather than p and /o). The
columns are normalized like unit vectors.

Table 10 may be used to understand what happens during the
numerical solutions. Similarity down each column's series of
arguments/frequencies causes correlation, while dissimilarity
promotes separation. First, notice that the dissipation columns
are dominated by the precession pole offset (cos F latitude term),
but this offset is zero for the harmonics. Only dissipative effects
contribute to the observed 0.26" pole offset. Separation during
solutions depends on the largest dissimilar coefficients, provided
the data span is comparable to or larger than their periods and
beat periods with other major terms. The number of parameters
in the fit must at least be matched by the number of detectable
periodicities in the partials. In the simplest case the partials
would be considered in decreasing order of size, but there are
complications since of the three free libration modes one is near
the 27.2 day F term (24 year beat period) and another is near the
1095 day term (81 year beat). Though the LLR data span
exceeds 24 years, the earliest data is an order of magnitude less
accurate than the recent data. While the determination of the F
term is weakened somewhat, the 1095 day term is more strongly
affected. With this reasoning the following statements are made.
(1) For 2 decades the fits of ephemerides, including DE403,
solved for harmonics plus the k, and At of the tidal model with
O~1/frequency (k, is phased orthogonal to the table's terms).
Consequently, the 27.2 day, 3 year, and 6 year terms were of
paramount importance aided by the 206 day term, which is next
in size. (2) Adding K/C to the preceding solution parameters
requires one or more additional distinct frequencies, e.g., the
27.6 day term. (3) The obvious way to distinguish a different
tidal dissipation law such as constant Q is to use the annual term.
There is very little interference from the core or harmonics terms.
(4) To test Q values at other frequencies requires either detecting
very small terms or using an independently derived gravity field
of high accuracy. Adding more solution parameters forces the
fits to rely on smaller periodic terms in the partials for separation.

Timescales from 1 month to 6 years are important for studying
dissipation. Six years is a major periodicity in the rotation
partials, and it is also a beat between the 27.2 and 27.6 day
periodicities. For the broader goal of fitting lunar science
parameters beyond those in Table 10, some rotation partials
involve the same periodicities (but not the same coefficients), but

Table 10. Comparison of Larger Periodic Latitude and Longitude Out-Of-Phase Libration Terms for
Two Gravitational Harmonics, Two Q Scalings, and Fluid Core Coupling?

Term Libration Period, S31 S33 Q~1/frequency Q constant KIC
days

cos F Lat 27.212 0 0 0.982 0.992 1.000
cos(F-¢) Lat 2190.350 -0.410 -0.178 -0.057 -0.066 -0.005
cos(2{-F) Lat 27.906 0.019 0.009 0.002 0.001 0
cos(2F-2£) T 1095.175 -0.899 0.982 —0.181 -0.103 0.005
cos(2(-2D) T 205.892 -0.142 0.060 -0.022 -0.018 0
cos /' 1 365.260 0 0.008 0.001 0.036 0.001
cos £ T 27.555 -0.037 -0.012 —0.005 -0.005 0
cos(2F-2D) T 173.310 0.023 0 0 0.001 0
cos(£~D) T 411.784 0.021 -0.008 0.003 0.002 0

3 The periodic latitude term is p, — T sin / cos F, the periodic longitude libration is 7, and fluid core coupling is
proportional to K/C. The partial derivatives in each column are normalized to unit column length. Variety promotes
separation during solutions. A periodic term is given if any coefficient in the row exceeds 0.020.
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with sines rather than cosines. Other partials reverse the
periodicities between longitude and latitude librations. Initial
conditions of the rotation are equivalent to the three free libration
modes at 27.3 days (with a 24 year beat with F), 1056 days
(weakening the separation of the 1095 day terms), and 75 years.
The reflector X partial starts with a constant and semimonthly
terms. The leading terms for the Y and Z partials involve sines of
¢ and F, respectively. The tidal displacements project into range
as a third-degree function of reflector coordinates. All this
variety promotes separation during solutions. Important qualities
for extracting lunar science information are accurate ranges, a
long data span, and a broad spread of retroreflector locations.

18. Dissipation Solutions

The high accuracy of the Lunar Laser ranges (0.5x10-10
relative to the distance), the substantial data span, and the
geometrical diversity of multiple ranging stations and multiple
lunar retroreflectors permit solutions for a broad set of dynamical
and geometrical parameters. Solutions for dissipation
parameters, and the implied tidal Q values and core existence, are
subjects of this section.

Lunar Laser ranges from March 1970 to July 1998 are the data
set. Data from the earliest few years have uncertainties of
0.2-0.3 m. Ranges from the most recent years can be fit with a
2 cm root-mean-square (rms) residual. Ranges are from three
sites on the Earth: McDonald Observatory, Texas, Observatoire
de la Cdte d'Azur (OCA), France, and Haleakala Observatory,
Maui. The first two sites are currently operational. For further
information on the ranging stations, consult Dickey et al. [1994]
and Samain et al. [1998]. There are four actively used
retroreflectors: Apollo 11, 14, and 15 and Lunakhod 2 (see
Figure 2).

The set of lunar solution parameters includes P, y, J,, third-
degree gravitational harmonics, Love numbers k,, h,, and /,, tidal
time delay associated with k,, core-mantle coupling K/C,
amplitudes for five dissipation-related analytical terms in
rotation, and three-dimensional coordinates of the four
retroreflectors. Also, integrator initial conditions for lunar orbit
plus solid-body and core rotations comprise 18 parameters. The
product of the gravitational constant and mass for the Earth and
Moon (G(M+m)) and two (Earth) tidal dissipation parameters
influence the orbit. Additional parameters include the Earth-

Moon orbit about the Sun and, because the lunar and planetary
data are fit jointly, planetary orbits. An analytical partial for an
eccentricity rate is available. There are also geocentric
coordinates for the terrestrial ranging sites, horizontal rates for
plate motion, parameters for Earth orientation, precession and
nutation, plus a stochastic procedure for Earth-rotation
corrections which is important for the early observations. In
addition to the choice of solving for a parameter or leaving it
unchanged, parameters may be subject to linear constraints (e.g.,
one parameter may be forced to take a particular value, or two or
three may be required to satisfy a linear relation).

As discussed in the previous section and demonstrated in
Table 10, errors in the gravity harmonics S;; and S35 will corrupt
dissipation solutions. Of the usable dissipation terms, the annual
term and the large displacement of the pole direction are the least
sensitive to the gravity field. The solutions in Table 11 vary both
the treatment of the harmonics and the use of solution parameters
based on numerically integrated and analytical partial derivatives.
The tabulated parameters are extracted from the larger solution
set. In Table 11 the A symbol indicates an increment using an
analytical term. Total values are used for the remaining five
parameters in the table which come from the numerically
integrated tide, core, and gravity field models. To get a total
value for an analytical dissipation term, it is necessary to add the
model influences, computed from the tables of this paper, to an
increment marked by A. The tabulated rms uncertainty is
normalized to the observational uncertainties. The weightings of
the LLR data and sets of planetary data are adjusted so that the
normalized rms is near one. The 12,455 lunar ranges are 29% of
the total number.

The first example in Table 11 (case A) uses numerically
integrated partial derivatives to solve for the tide and core-mantle
coupling parameters (k,, tidal time delay, and K/C), the §j,
and §;; harmonics, and the annual amplitude. Implicit in
the numerical tide and core models is an additional
0.3 milliarcsecond (mas) for the annual term, giving a total
dissipation effect of 3.7 mas. From the tidal and core parameters
one computes the combined /o = —262.7+2.3 mas (time delay
and K/C are correlated -0.973, so the uncertainty in the
combination is small). The core model causes 33% of that offset.
This first case is limited to one analytical coefficient because the
harmonics are included as solution parameters.

Luckily, the accuracy of the gravity field LP75G [Konopliv et

Table 11. Three Solutions for Dissipation and Related Parameters?

Parameter Unit Case A Case B Case C
Norm rms 1 0.8479 0.8490 0.8470
ky 1075 2874+80 2867+80 286880
Time delay day 0.1152+0.0140 0 0.1079
KIC 1084 1.12240.257 0 1.317
ATyi6 mas 0 -1.0+1.6 2.7+1.6
ATyes mas 34+18 4.1+1.8 36+1.8
AT 095 mas 0 ~26.7+5.9 3.0+59
Alo,, ¢ mas 0 7.5+£1.0 1.1£1.0
Alo_ . mas 0 -264.0+5.0 4.615.0
a1 10°¢ 5.6410.64 5.869 5.869
55 1077 -2.580.11 -2.457 -2.457
Ae 1071 yr! 1.68+0.48 0.65+0.46 1.55+0.47
h 1 0.034+0.018 0.035+0.018 0.041x0.018

2

9Free solution parameters are displayed with uncertainties, while fixed parameters lack
uncertainties. Angles are in milliarcseconds (mas). The first line is the normalized root-mean-square

residual for all lunar and planetary observations.
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al., 1998], based on Doppler tracking of Lunar Prospector (three
months) plus earlier spacecraft, makes it practical to adopt one or
both of the harmonics. With both tidal time delay and K/C forced
to zero with constraints (the initial values for the numerical
integration are not zero), which has the effect of canceling
rotation and orbit effects from the numerical integration, and the
LP75G values for S, and S35, the coefficients of five periodic
dissipation terms are solved for. This solution is case B in
Table 11. When noise from the gravity field is added to the
uncertainties in the table, the uncertainty for the 3 year
coefficient is 7.1 mas, and that for 27.6 days is 1.2 mas. The
constant pole offset is correlated —0.93 with k, since the tidal
contribution depends on the product of k, and time delay. The
constraints on tidal time delay and K/C move the pole in one
direction, while the analytical term moves it back the other way.
This presumably explains the increased uncertainty from case A.

The case C solution fixes the tidal time delay and K/C to the
numerical integration values used for data reduction (DE330 was
generated using 2 years less data than the tabulated solutions) and
fixes the S5, and S35 harmonics to the LP75G values. Analytical
coefficients are solved for, but these are now corrections to the
numerically integrated dissipation model. When those
corrections are added to coefficients calculated from the model
parameters, one gets —0.9, 4.0, -27.4, 7.4, and —262.6 mas, in the
order of the table. The agreement between the second and third
cases is quite good, which validates this paper's analytical
theories for rotation.

The similarity of the total annual effect across the three
solutions (3.7, 4.1, and 4.0 mas for cases A, B, and C,
respectively) illustrates its insensitivity to the gravity field. The
pole offset shows a range of 1.4 mas. To compute the pole offset
better than 1 mas involves such complications as solar effects and
nonlinearities in the solution from changes in moment and k,. Of
the three solutions the rms residual from case B is slightly larger
than the other two, presumably because it lacks small dissipation
terms, other than the five in the solution, which are implicit in the
numerical integration.

Most of the annual term must be from tidal dissipation since
the coefficient is insensitive to gravity field and core. The annual
QO dominates the annual rotation term (Table 1). The annual tidal
@ is ~60 (-19, +49, uncertainties are symmetrical for 1/Q). The
remaining terms require more interpretation.

Before attempting to interpret all five rotation terms, consider
the influence of dissipation by both tides and core to give the
observed (case B) —264+5.0 mas constant and 7.5+1.2 mas
27.6 day latitude corrections. For a —264 mas offset entirely due
to tides, Table 3 (constant Q) would predict a 15.1 mas term at
27.6 days, while Table 4 (Q~1/frequency) predicts 12.4 mas.
These predictions are larger than the observed correction by more
than 6 and 4 times the uncertainty, respectively. Table 2 shows a
dependence of the 27.6 day term on a 6 year Q as well as the
monthly Q. Is it possible to adjust the monthly tidal Q and 6 year
Q to match the two observed corrections? The mathematical
solution gives a negative Q at 6 years. This is rejected as
unphysical. To explain the two dissipation terms with core alone,
Table 8 would predict —3.6 mas for the 27.6 day dissipation term.
This prediction is too small by 9 times the uncertainty. The two
observed latitude corrections of case B can be matched with a
linear combination of tide and core dissipation. Define f, as the
fraction of the -264 mas offset due to core dissipation.
Combinations based on a constant tidal Q yield f, = 0.41, while
those for tidal Q~1/frequency give f, = 0.31. A combination of
core and tidal dissipation matches the two latitude terms.

Tables 1 and 2 show that the five tidal dissipation terms of
cases B and C depend on O parameters at a variety of tidal
periods. The number of independent Q parameters depends on
the truncation level, and those parameters, if treated as unknown,
can exceed the number of solution coefficients. A smooth
function is needed for the Q dependence of tidal frequency. The
Q is assumed to follow a power law Q = Q ( Frequency / F)* =
Qr(27.212 days / Period )*. The two special cases previously
considered are w=0 for Q independent of frequency and w=-1
for Q~1/frequency. A power law makes the tidally induced
coefficients functions of two unknown parameters, the monthly
QOF and the exponent w. The strength of the core interaction
provides a third unknown (f.). So there are three adjustable
parameters available to fit the four significant coefficients. The
206 day term does not have a significant detection and has a
minor role in much of the following discussion. A power law has
been used to model the frequency dependence of the solid Earth's
Q (see section 20). In principle, expressions more complex than
a power law are possible, and Tables 1 and 2 may allow more
general forms to be tested in the future.

For the five coefficients of the case B and C solutions we
return to the hypothesis that rotational dissipation can be
explained by tidal dissipation acting alone. The tidal coefficients
for the 27.6, 206, 365, and 1095 day terms are calculated for a
sequence of w values using k,/Q from the —264 mas pole offset
(24<Q =25 for ~1<w<0.6). The small terms are scaled to the
large term, which has the least relative uncertainty. Figure 3
shows the four curves for —1<w<1 plus the solution coefficients
from case B of Table 11. The time-delay model in the integrator
matches w = -1, for which three solution magnitudes are smaller
and one is larger than the tide-only prediction (they disagree by
two to four times the uncertainties). Large positive values of w
are incompatible with the sign of the 1095 day coefficient. The
solution values for the annual and 1095 day coefficients cross
their curves for small values of w, but the 27.6 day latitude term
does not cross at all.

Instead of holding Q- fixed to the large offset term, a Q. curve
for a sequence of w values can be derived for each case B
solution coefficient. The resulting curves are shown in Plate 1.
If the power law representation is valid, ideal curves (no noise)
should intersect at a single point corresponding to the correct
tidal w and Qf, and curves generated from data should miss
intersecting at that single point owing to noise. As can be seen,
w=-0.2, Q=40 is promising for three curves, but the pole
offset gives Q=244 for that w. A pure tidal solution is
disappointing and does not reconcile these data within several
times their uncertainties.

Tables 7 and 8 show that the pole offset provides most of the
signature due to a core. If a core contributes a fraction f, of the
—264 mas offset term, then the (Plate 1a) tide-only Q. for that
term will be scaled upward by 1/(1-f.), and the computed
coefficient curves analogous to Figure 3 shrink to smaller
magnitudes. The tidal and core tables (1, 2, 7, and 8) are used to
compute the other four Q versus w curves. When a core is
added to tides the 27.6 day term shifts to lower O and the other
three curves move slightly. Plate 1b shows the O versus w
curves for f, = 0.34. Four curves pass near a single point. That
point is w = -0.1920.13, Q= 36.8+5.0 (correlation 0.25). The
uncertainty for f_ is then 0.09. Either using 1/Q curves or
including the 206 day Q curve changes the "intersection” very
slightly. If 1/Q curves and the 206 day curve are used, then
w=-0.17£0.13, Qp=38.9+54 (correlation 0.23), and
f.=0.37+0.09. The use of 1/Q, curves may be a more

85UB017 SUOLILLIOD BAIERID B|ded| [dde 8y} Aq pauRA0B 88 S3[0 11 YO ‘BSN JO S3INJ 10} ARIGIT BUIIUO AB]IM UO (SUORIPUOD-PUR-SLBYW0D" A8 1M AIq 1[oulUO//SdNY) SUORIPUOD PpUe SW L 8U3 89S *[7202/T0/80] Uo ArigiTauluo AB|im ‘PuelAriN JO AisAIUN Aq 96ETO03C0002/620T OT/I0pW00" A8 1M Al jpuruosgndnBey/sduy woiy pepeojumod ‘TT3 ‘TO0Z ‘©9202295TC



27,956 WILLIAMS ET AL.: LUNAR DISSIPATION IN MANTLE AND CORE

365 Day Term
Tides Only

206 Day Term
Tides Only

—_—
o

LB | UL | | L I LILLELIE

g °F E
EoEImTTIIII A
5 F .
= e e -]
8 S —
O [ 3
_10—|||||||||||||||||||'

-1.0 =05 0.0 0.5 1.0
Power-Law Exponent, w
1095 Day Term
Tides Only

40 B | LI I LI | LI |_
2 20 —
g -
~— O ]
= ]
2 3
o_ .
= 20 .
P, AN
S -40 g
_60'|||||||||||||||||||:

-1.0 -05 0.0 0.5 1.0
Power—Law Exponent, w

Coefficient (mas)

AR NN RN .

0
-1.0 =05 0.0 0.5 1.0
Power-Law Exponent, w

27.6 Day Term
Tides Only

N
o

J—
()1

[E—
)

9]

Coefficient (mas)

0
-10 -05 0.0 0.5 1.0
Power—-Law Exponent, w

Figure 3. Dissipation signatures in rotation. The observed amplitudes (dashed lines), shown with uncertainties
(dash-dot lines), are compared to theoretical amplitudes based on a power law dependence of tidal Q versus
frequency (solid lines). The exponent of the power law is the abscissa. The measured amplitude of the largest term
is used to scale the smaller terms. All of the dissipation is assumed to come from tides.

appropriate weighting since the rotation amplitudes are
proportional to 1/Q, but it only makes much difference if a curve
1s displaced from the intersection.

In Table 11 the case A solution corresponds to £, = 0.33£0.08
and QF= 37.6+4.6, remarkably close to the above analysis
despite the integrator's fixed value of w =—1. As seen in Plate 1,
positive and negative curvatures help ameliorate systematic
errors from the unadjusted w.

What are the model coefficients? The computed coefficients
using the above w =-0.19, Q= 36.8, and f_ = 0.34 values are
-3.4 mas for the 206 day coefficient, 3.9 mas for the annual,
—25.7 mas for 1095 day, and 7.7 mas for 27.6 day. The 206 day
term is discrepant at 1.5 times its uncertainty, and the other four
are well within their uncertainties. The evaluation of the power

law representation of Q as a function of tidal period gives the
values in Table 12. The Q values for periods <1 month or
>6 years are extrapolated outside of the most sensitive sampled
band.

The anomaly of Table 11 is the eccentricity rate. In Table 9
the SLR-based terrestrial tidal models have more independently
adjusted tidal components than the LLR model. An extra
eccentricity rate of about 0.3x10~!! yr-! would have been
compatible with the SLR models. In the solutions with integrated
core and tide effects, cases A and C, the anomalous eccentricity
rate is >3 times its uncertainty and much larger than variations
between terrestrial models can explain. An explanation for this
anomalous perturbation is not evident. The case B solution zeros
out the integrated orbit perturbations from lunar tides and core.
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Plate 1. Observed dissipation amplitudes are used to calculate monthly Q for a power law dependence of tidal 0
versus frequency. The curves (solid lines), shown with uncertainties (dotted lines), would intersect for an exact
solution. (a) The tide-only case fails to represent the observed amplitudes within uncertainties. (b) Dissipation
from tides plus core gives a consistent solution.
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Table 12. Value of Q as a Function of Tidal
Period Using the Power Law Representation
Q = 36.8 ( 27.212 days / Period )0 19

Tidal Period o Uncertainties
1/3 month 30 -5 +8
1/2 month 32 -5 +7
1 month 37 —4 +6
206 days 54 —-11 +19
1 year 60 -15 +30
3 years 74 -24 +65
6 years 85 -30 +105
75 years 137 —64 +950

In section 15 no eccentricity rate was found from a core, so a
core-only model (f,=1) should give the rate correction of case B.
That correction is 1.4 times its uncertainty, but eccentricity rate
could be reconciled with its uncertainty if tides on the Earth give
the higher rates of the SLR models. However, a core-only model
(see Tables 7 and 8) is not compatible with three rotation terms of
the case B solution. The 27.6 day coefficient is of opposite sign
and the difference (solution minus Table 8) is 9 times its
uncertainty, while the 1095 day and annual terms are 4 and 2
times their uncertainties, respectively. The solutions do detect
tidal effects on the Moon. (Not solving for an anomalous
eccentricity rate causes larger solution values for K/C.) There are
several reasons that the rotation is preferred over the orbit for a
core test. Four dissipation terms are detected for rotation, three
of them exceeding 4 times their uncertainties, while the more
weakly detected anomalous eccentricity rate is a single
discrepancy. The rotation is influenced by lunar dissipation
alone, while the orbit is influenced by dissipation in Earth as well
as Moon. Still, the anomalous eccentricity rate serves notice that
the dissipation is a complex problem and total understanding has
not been achieved.

The differences between solutions can be used to check the
secular orbit perturbations for » and e due to tides (Table 6) and
core (section 15). When case B was subtracted from cases A and
C, the change in the secular acceleration from dissipation in the
Earth was the expected size but opposite in sign to that calculated
from the Moon (the sum should nearly be invariant), confirming
the theory for mean motion and semimajor axis change. For
eccentricity rate the difference between solutions was 1.5 times
that calculated, so the theory for eccentricity rate may be
inadequate. Questions about the scale of the theory for
eccentricity rate due to tides on the Moon are avoided by using
case B, which gives a total rate of 2.0x10~'! yr-1. There is no
comparable check on the theory of eccentricity rate for tides on
the Earth, though other theoretical values are compatible
[Chapront-Touzé and Chapront, 1988]. Thus not only does the
orbital eccentricity rate appear to be higher than expected, but
there is also an incompatibility between theory and numerical
integration.

Tidal and core dissipation together match the LLR solutions
(coefficients or integrated parameters) much better than tides
acting alone. Notably, the failure of the 27.6 day coefficient to
intersect the theoretical curve in Figure 3, or, equivalently, the
wide discrepancy in Plate 1a between the Q derived from the
27.6 day and constant coefficients, is a major problem for a tide-
only explanation of dissipation. Tides plus a fluid-core/solid-
mantle interaction satisfactorily explain the lunar rotational
dissipation data.

19. Molten Core: Implications and Comparisons

Detection of dissipation effects at four rotation frequencies
supports both solid-body tidal dissipation and a molten core.
What do these results indicate about the lunar interior, and how
do they compare with other scientific information? This section
discusses the core, and the next discusses the solid body.

The Lunar Laser data analysis indicates a liquid core and
determines a coupling parameter. While the coupling constant
depends on radius, and on the composition of the fluid core
through density and viscosity, these are not separately measured.
Much of the lunar core literature concerns a metallic core, usually
iron and iron alloys, and that is reflected in the following
discussion.

The core boundary pressure should be near 50 kbar. A fluid
core is likely to include sulfur and nickel along with iron.
Adding sulfur to iron reduces the density and markedly lowers
the melting point. While pure Fe at 50 kbar melts at 1660°C, the
Fe-FeS eutectic point is near 1000°C [Brets, 1973]. Adding
nickel can further lower the eutectic temperature to ~940°C and
can increase the density a few percent. The amount of sulfur in
the core and the behavior of the Fe-FeS system are of
considerable importance to the state of the liquid core; the effect
of nickel is less dramatic.

Metallic iron is inferred in the mantle, and Stevenson and
Yoder [1981] argue that a core would be on the iron-rich side of
the Fe-FeS eutectic composition (25 wt % S). Cooling such an
Fe-FeS melt in the liquid+solid part of the phase diagram would
precipitate solid iron while concentrating the sulfur in the liquid
phase. Freezing all of the liquid requires a temperature below the
eutectic temperature. Liquid-outer/solid-inner core models are
distinct possibilities. Completely fluid or solid cores are end-
members. A completely solid core cannot have been reached
since there must be at least a thin fluid shell to apply the torque
that LLR analyses detect. Yoder's theory has a turbulent layer of
thickness equal to the horizontal motion R’sin /= 10 km, so this
sets a minimum liquid shell thickness for the calculations to be
meaningful. The relative sizes of the inner and outer cores would
depend on the initial S/Fe proportion and the present core
temperature. For a core of radius of 350 km with a present
temperature of 1400°-1700°K, and evolutionary cooling of
50°-150°, Stevenson and Yoder calculate a sulfur mass fraction
of 0.04-0.13 and a liquid shell thickness of 65-180 km.

The fluid-core/solid-mantle coupling constant is discussed in
section 11. The solution parameter is K/C, but the moment C is
known well enough to use K. Equation (57) relates core fraction
fo» fluid density, a theoretical parameter k based on turbulent
boundary layer theory, and core radius. The parameter x is
calculated for a thick turbulent layer adjacent to a thin laminar

Table 13. Limiting Cases, in Terms of 1 ¢, for Four Core
Configurations Composed of Iron and Sulfur?

Liquid  Solid Max R, Max— Max % MinE  «
Outer Inner km 104 104
Fe none 352 0.018 73 0.022 7.3
Fe Fe 352 0.019 8.0 0.020 —
Eutectic  none 374 0.016 7.4 0.021 7.2
Eutectic  Fe 374 0023 108 0.015 —

3Columns are given for radius, core/Moon mass ratio, core/Moon
moment of inertia ratio, & = —K/C’S2, and k. The eutectic composition is
25 wt % S and 75 wt % Fe.
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boundary layer using (58) based on Yoder's theory, but
topography at the boundary has the effect of increasing X.
Consequently, the core sizes here are treated as upper limits.

The Lunar Laser Ranging determination gives f, = 0.3420.09.
For a liquid iron core the corresponding radius is
335 (-21,#17) km. So the 1-G upper limit of 352 km has the
uncertainty added to the estimated value. Table 13 presents such
upper limits for core radius and also core/Moon ratios for mass
and moment of inertia. The two ratios assume a homogeneous
core density. The four cases are (1) a liquid iron core, (2) a thin
liquid iron shell over a solid iron 1nner core, (3) a liquid Fe-FeS
core at the eutectic composition, and (4) a thin liquid Fe-FeS
eutectic shell over a solid iron inner core. The adopted densities
are liquid iron 7.0 gm cm™3, solid iron 7.7 gm cm™3, and the
Fe-Fe$ eutectic 5.3 gm cm™.

The generation of Table 13 is subject to several caveats. An
approximate turbulent boundary layer theory is used. A liquid
shell thinner than 10 km would cause problems. Also, adding the
uncertainty to the estimate gives a 1-¢ limit, not a strict upper
limit. Likely outweighing these concems is the unknown size of
core/mantle topography. Doubling k reduces the size of the core
by 13%, decreases the mass ratio by 44%, halves the moment
ratio, and doubles the . If there is a solid inner core, the liquid
outer core has two surfaces for dissipation (and two values for x),
and like topography, this would cause the radius to be
overestimated. An inner core could have its own rotation,
increasing the complexity of the dynamics. It is assumed that the
inner and outer cores rotate together to get those two limiting
cases in Table 13.

The detection of the large pole offset term 2 decades ago did
not allow separation of causes. Yoder [1981] argued that the tidal
O was not expected to be small enough to give the observed
offset and therefore proposed a liquid core as the source. This
paper finds both strong tidal dissipation and a substantial core.
Yoder's [1995] boundary layer theory weakens the coupling
constant by a factor of 3 over the 1981 skin friction value
(x=0.002), but since this paper finds that the core causes ~1/3 of
the observed pole offset, the resulting core size is similar to that
given in the 1981 paper.

How do the results of Table 13 compare with other
information on a lunar core? Analyses of Apollo-era
measurements on the magnetic induction of currents and of a
magnetic dipole moment put an upper limit on core radius of
400-500 km [Wiskerchen and Sonett, 1978; Goldstein, 1979,
Russell et al., 1981; Hood, 1986]. Recent measurements of the
induced dipole moment by the Lunar Prospector spacecraft give
340190 km [Hood et al., 1999].

Successful models of the lunar interior must be compatible
with seismic results, plausible compositions, mean density, and
moment of inertia. Such models favor a dense core. Binder
[1980] finds the radius of an iron or iron-rich core to be between
200 and 400 km. Consideration of a variety of interior models by
Hood and Jones [1987] led to metallic cores from 250 to 460 km
(1-4% mass fraction). Their upper limit was set by the magnetic
induction results. A study by Mueller et al. {1988} concluded
that a metallic core of at least 150 km was necessary. A smaller
core would require a crustal density below 2.9 gm cm™. Kuskov
and Kronrod [1998a, 1998b] estimate a core of 320-390 km for
iron and 490-600 km for FeS. The Apollo era provided most of
the data for the models, but the recent improvement in the
moment of inertia [Konopliv et al., 1998] strengthened the model
results. None of these conclusions conflicts with the limits of
Table 13, though the tabulated limits are generally more

restrictive on the upper limit. The LLR results require a liquid
core or shell, while the model results can be solid or liquid.

Seismic waves have been successful at probing much of the
Moon, but the deepest regions are more difficult. One ray
traversing the core region was either very weakly detected and
delayed [Nakamura et al., 1974] or ambiguous [Goins et al.,
1981; Sellers, 1992]. If the late P wave arrival of Nakamura et
al. is valid, then a molten core with radius 170-360 km is
indicated. The inferred P wave speed through the core is lower
than expected from pure iron, inspiring consideration of an FeS
core. Sellers finds that a relocation of the impact would satisfy
the data but suggests arrivals for two other events consistent with
a low-velocity core about 400-450 km in radius. Free
oscillations are sensitive to interior structure. Khan and
Mosegaard [2001] have searched the seismic records for free
oscillations following impacts. The spectra were stacked to give
a signal-to-noise ratio of ~1.9. Their inversion does not show a
liquid core, but a fluid shell could be unresolved by the 100 km
granularity of their deep structure model.

Siderophile elements are expected to accompany iron into a
core. Their abundances are depleted in lunar rock samples with
respect to both primitive meteorites and the Earth's mantle.
Newsom [1986] finds the depletion consistent with a metallic
core of 5% mass fraction if the Moon formed from chondritic
siderophile abundances. Starting with the Earth's mantle
composition would generate a smaller core (mass fraction
<1.2%). In a study of core formation, Righter and Drake [1996]
get best agreement with siderophiles for a 5% core mass fraction
but offer a 1% alternative. The sulfur mole fractions are 0.15 and
0.20, respectively. The larger core mass fractions are not
compatible with the Lunar Laser results.

Thermal models exhibit variety. The example by Toksdz et al.
[1978] has the center warming up with time, and it is stated that if
a core is present, it is liquid. On the basis of several models,
Toksdz states that the central temperature can be 1000°-1600°C.
Binder and Lange [1980] present an initially molten Moon which
mainly cools in the upper layers. Schubert et al. [1980] have
most of the temperature gradient across a 290 km lithosphere,
while a deeper convecting zone is isothermal. The central
temperature has cooled up to 150°C. Konrad and Spohn [1997]
and Spohn et al. [1999] start with a hot interior containing a
liquid core. Cooling of the upper mantle forms a lithosphere,
while the deepest zones cool only modestly. The former paper
finds that the core remains molten to the present if its sulfur
content is ~8% or more.

Many ancient lunar rocks with ages from 3.1 to 4.0 billion
years show remanent magnetization. The strongest
magnetization is from 3.6 to 3.9 billion years ago [Cisowski et
al., 1983; Cisowski and Fuller, 1986]. One interpretation is that
the early Moon had a molten core with a dynamo which is no
longer in evidence. There are several problems. Thermal
evolution models which start with a cold interior do not heat the
center fast enough (~1/2 billion years) to melt a core and provide
an early dynamo. Sources of energy to power a dynamo have
proved elusive [Stevenson, 1983]. A dynamo would turn off if
the core solidified or if the vigor of fluid convection decreased
below a threshold. Stevenson [1980] has proposed asymmetrical
core formation with temporary dynamo action. The current
absence of a global magnetic field does not preclude a partly or
wholly molten core or a past field.

The power dissipated in the turbulent boundary layer is
(1.9£0.5)x1022 ergs yr-!. This is a minor source of heating at
present (see next section) but may have been important in the
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past. This power scales 1n proportion to k n3sin31/(1+£2)!5.

The dissipated power would have been strong when the Moon
was near the Earth, but another maximum occurs near
200,000 km, just over half of the present distance. There the
Moon passed through a change of spin state with the equatorial
tilt 7 taking large values [Ward, 1975]. During this transition the
core dissipation would have been ~10%7 ergs yr~!, provided that
the core was liquid and of present size. Stevenson [1983] states
that about 3x102* ergs yr'! is needed to drive a dynamo
sufficiently powerful to explain the strongest remanent
magnetization. The turbulent power per area is not spherically
symmetrical; for power proportional to differential velocity
cubed, the ecliptic poles receive 3n/4 = 2.36 times the average
along the equator. Even though it is deposited in the upper part
of the liquid, such a nonuniform distribution of power can
promote convection and, presumably, drive a dynamo. If there is
an inner core, then some energy would be deposited at the lower
boundary as well. If core dissipation was the source of energy
for the generation of a paleofield, then the period of stronger
magnetization could mark the time of high tilt near the change of
spin state; the power would decrease sharply, and convection
would stall as the Moon evolved outward.

Attributing part of the lunar rotational dissipation to a liquid-
core/solid-mantle interaction is compatible with other lunar
science data, though it is not compatible with large-core
(>400 km) interpretations. Of the other lunar science
information, only the uncertain seismic datum indicates a present
molten core. Free oscillation data may favor a liquid shell over a
fully molten core. The 1-G limits of Table 13 indicate a small
liquid lunar core with a mass fraction up to ~2%.

20. Solid Body: Implications and Comparisons

Solid-body tidal dissipation effects are detected at four rotation
frequencies. This section discusses the implications for the lunar
interior and the comparison with other science results.

An Earth analog would be useful for interpreting the tidal Q
values for the Moon. The Earth's total response (solid body +
oceans) can be measured at several periods: diurnal and
semidiurnal through tidal effects, monthly and semimonthly
through the response of the Earth's rotation to zonal tides, and
14 months through the Chandler wobble. Because of strong
ocean responses, the solid-body tides are difficult to separate
from the total measurements. At longer periods the oceans are
expected to be closer to equilibrium. A determination of the
solid-body semidiumnal Q of 370 (confidence interval 200-800)
has been reported [Ray et al., 1996]. Anelastic theory using a
power law for Q favors a small positive value of w such as 0.09
[Smith and Dahlen, 1981]. In this paper (and in Ray et al.) the @
is defined from the phase shift of the &, tidal response which is
the measurable quantity. Call this whole-body value the tidal Q.
The properties of the Earth are not uniform, and the tidal Q is a
function of the mantle Q, most strongly the lower mantle. If
w=0.09 is used to extrapolate the Ray et al. value, then the tidal @
would be 260 at 1 month and 205 at | year. The corresponding
lower mantle Q values are model dependent, but from tabulations
of Wahr and Bergen [1986], Q| ..4e = 0-6 Qqa for w=0.09. The
monthly lunar tidal Q of 37 is surprisingly low by comparison
with the Earth. There is less difference at the annual period,
particularly 1if the uncertainties are considered. The lunar
w=-0.19+0.13 from the power law fit indicates a slight
dependence on frequency, but with a different sign than is used
for Earth models.

Theories of viscoelastic rheology have the intent of connecting
dissipation at a wide range of timescales [Ross and Schubert,
1986]. When 1/Q is small, then a Maxwell rheology gives Q
nearly proportional to frequency (w=1), while for a Kelvin-Voigt
rheology, Q is nearly proportional to inverse frequency (w=—1).
The LLR result of w=-0.19+0.13 is in disagreement with both.
The third model considered by Ross and Schubert has two
adjustable parameters and can fit shallow frequency dependence
over a restricted spread of frequencies.

There are lunar seismic determinations of local Q versus depth
based on frequency bands near | and 8 Hz [Nakamura, 1983;
Goins et al.,, 1981]. The P and S wave seismic data show
0>1000 in the upper zones, much larger than for the Earth,
perhaps owing to the anhydrous nature of lunar rocks, with Q
decreasing with depth. Nakamura and Koyama [1982] find that
the S wave Q increases with frequency above 5 Hz. Goins et al.
call the region below 1100 km depth the attenuation zone. Both
S and P waves are diminished, but the attenuation in this zone is
stronger for S waves than for P waves. Goins et al. say Q<500
and Nakamura et al. [1982] say Q<100 for § waves. The Q
values of both the LLR analysis and the § wave data correspond
to dissipation associated with the rigidity or shear modulus. The
anelastic theory for the Earth treats dissipation at seismic through
Chandler wobble frequencies as arising from a common
phenomenon. If the Moon can be treated similarly, then it
suggests that the attenuation zone may be the cause of the low
tidal Q. However, this would imply a very small local Q for the
attenuation zone since it has only 4% of the lunar volume. If the
bulk of the tidal dissipation is not in the attenuation zone, then
the seismic and long-period tidal Q values are both larger than
the monthly Q and a simple power law cannot connect them. It
has been suggested that the seismic attenuation zone is due to a
partial melt [Nakamura et al., 1974; Goins et al., 1981]. If the
lunar tidal @ mainly arises from a partial melt, then it is unlike
the Earth's solid-body tidal Q.

One of the consequences of anelastic theory is that it causes
the Love numbers to be frequency dependent, violating one of the
assumptions of this paper. There are pairs of terms which cancel
because of this assumption. So there would be additional terms
from the tidal torques, but orthogonal to this paper's dissipation
terms.

Just above the attenuation zone lies a region (depth
700-1100 km) of deep-focus moonquakes. The juxtaposition of
the two zones could indicate that an abrupt change in rheological
properties is concentrating the strain [Goins et al., 1981]. The
deep moonquakes repeat monthly and appear to be triggered by
tides.

For all of the solutions in Table 11, the secular acceleration An
from tides on Earth and Moon plus core interaction is
-25.9 " cent~2, and the semimajor axis rate change is
Aa=382mmyr ! For a lunar Q of 3745 the tides cause
changes of 0.29+0.04 " cent™2 and -0.43%0.06 mm yr!,
respectively, while the core-mantle interaction gives only
0.013+0.003 " cent™2 and —0.019+0.005 mm yr~!. The rate of
energy deposited in the Moon is equal to the rate of energy drawn
from the orbit: (4.3+0.6)x10% ergsyr ! for udes and
(1.9+0.5)x10%2 ergs yr~! for the core-mantle interaction. The
dissipation rate expressed as a steady state flow through the lunar
surface is 3.8 nwcm~ %, much smaller than the
(radiogenic+cooling) heat flow: 480 times smaller than the
1.8 pw cm2 of Langseth et al. [1976] and 320 times smaller than
the 1.2 uw cm™2 of Warren and Rasmussen [1987]. Though
former assumptions about lunar Q are now removed, we concur
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with earlier studies [Kaula, 1963, 1964; Kaula and Yoder, 1976;
Peale and Cassen, 1978] that tidal heating for the present bulk
Moon is not important compared to radiogenic heat sources.

How does the tidal power compare with the energy released by
tidally triggered deep-focus moonquakes? Goins et al. [1981]
give 8x1013 ergs yr! for the latter. It 1s plausible that tidal
energy powers these moonquakes. The tidal power is ten orders
of magnitude larger than the deep-focus energy release. On
average the energy dissipation in a 2 km region is comparable to
the total deep-focus seismic release. The Al focus has a size of
~1 km [Nakamura, 1978]. The stress drop is compatible with
tidal strains [Toksoz et al., 1977; Cheng and Toksoz, 1978], and
the moonquakes reverse direction during part of the tidal cycle.
Whether tidal energy powers the moonquakes or not, it is clear
that the energy dissipated in deep moonquakes does not
contribute significantly to the tidal Q. For shallow-focus
moonquakes, Goins et al. give an energy release of
2x10!7 ergs yr1, but there is no evidence that these are tidally
influenced.

The Lunar Laser analysis determines a bulk tidal @, and it is
unknown whether this low Q is a widespread property of lunar
rock or whether there is a localized zone of high tidal dissipation.
First consider the distributed case. For steady state thermal
models with uniform conductivity (3.5 w m~1 °C-1), uniform tidal
energy deposition, and no convectjon, the mean temperature of
the Moon would increase 3.5°C, and the center would rise 9°.
This is minor compared to radiogenic heating. In addition to tidal
dissipation, 4% of the total energy is being deposited in a thin
boundary layer (roughly 10 km thick, according to Yoder's
theory) at the core-mantle interface. This should raise the
temperature at the core-mantle boundary ~4°. Uniform energy
deposition is an idealization since even uniform elastic properties
lead to strain and dissipation increasing with depth.

Consider a zone of high tidal dissipation. Since radioactive
minerals tend to migrate upward, localized deposition at depth
would increase the importance of tidal deposition with respect to
radiogenic sources. An attenuation zone from 350 to 640 km
radius has 4.2% of the lunar volume. This zone is known to be a
sink for seismic energy, so it is possible that a substantial portion
of the tidal energy is being deposited in a small volume just
above the core. If most of the tidal energy is being deposited in
the attenuation zone, then the (steady state) outward flow of tidal
and turbulent power would raise the temperature ~32° at the top
of the attenuation zone.

On evolutionary timescales, thermal effects from tides are
more interesting. This question has been considered by Peale
and Cassen [1978]. To scale their power calculations to the
monthly k,/Q of this paper, multiply by 3.45. The frequency
dependence of this paper's Q would increase that further.
Dividing the accumulated energy by the product of heat capacity
(1.2x107 ergs gm~! °C-!) and mass (7.35x102° gm) gives an
upper limit for average temperature increase. Since the early
tidal evolution is fast and deposits most of the energy early in the
Moon's history, the limit may be close to the early temperature
gain. Peale and Cassen estimated that tidal dissipation would
increase the mean lunar temperature by 40°C, but the above
factor raises it to 140°C. For a uniform Moon they also
calculated the spatial distribution of power per volume, and the
center receives about three times the average. Thus Peale and
Cassen's scaled results indicate that even a uniform Moon could
have tidally heated the center by ~400°C, and for a nonuniform
Moon it could be higher.

Peale and Cassen stretched the timescale for tidal evolution to
match the age of the two bodies, and their above total heating is
proportional to the stretching. This was done because,
extrapolated backward, the measured tidal acceleration brings the
Moon close to the Earth in a time (1.6x10° years by our
calculations) that is much less than the age of either. Even with a
uniformly stretched timescale (a factor of ~2.7), the time to
evolve outward to the distance (about half present) of Ward's
{1975] spin transition is fast, <108 years. The tilt of the lunar
equator and, consequently, the tidal and (if the core is liquid)
turbulent power are increased during and near the transition. In
addition to the transition, high power occurs when the Moon is
close to the Earth. However, computations based on the present
measurements are not easily extrapolated to times before the
figure froze or into the magma ocean era.

The Earth's tidal dissipation is mainly localized in the oceans.
The extent, depth, and shape of the oceans depend on plate
motion, so it is reasonable that the tidal Q varies, and it is
plausible that the present tidal rate is higher than average. The
tidal response of the oceans to the tidal forces at the tidal
frequencies depends on the natural frequencies, strengths, and
dissipation of oceanic normal modes. The normal modes depend
on the changing configurations of the oceans and continents, and
the tidal frequencies change owing to the evolution of the lunar
orbit and Earth's spin. The timescale stretching is an important
question, and one can look to the tidal paleorotation data for
guidance. As reviewed by Lambeck [1980, 1988], paleorotation
data are most dense for the past 4x10% years, but are noisy. The
number of days per year seems to support an average rate of
orbital evolution compatible with, or somewhat less than, the
LLR-derived tidal recession. The number of days per month
indicates either a lower rate, a nontidal acceleration of Earth
rotation, or a systematic loss of tidal bands. Two older data may
indicate a slightly stretched timescale for the past 9x108 years
[Sonett et al., 1996]. Any substantial stretching appears to be
earlier. The timescale problem has been investigated using
idealized ocean models. As summarized by Bills and Ray [1999],
the most important influence is found to be the changing tidal
frequency. The present semidiurnal tidal frequencies are higher
than the most important normal mode frequencies, and the faster
spin rate in the past would have decreased the tidal 1/Q. Thus the
timescale is stretched nonuniformly. The present tidal evolution
is similar to measured values, and earlier rates are slower than
those based on constant Q.

Peale and Cassen's [1978] tidal power computations kept the
orbit eccentricity and inclination fixed while the distance
changed. Preliminary calculations here indicate that an evolving
orbit increases the power deposited in the Moon by both tides and
core-mantle interaction. This occurs because, near the spin
transition, both lunar tides and core dissipation cause a large
negative orbital inclination rate, so a large inclination (>30°) is
possible before the transition. A larger inclination causes
increased tidal and turbulent dissipation. With evolution and this
paper's k,/Q the tidal power increase near the spin transition is an
order of magnitude larger than that of Peale and Cassen. Without
stretching the timescale it is possible to heat the center by
~200°C, provided a Q of 37 is appropriate; most (90%) of this
heating occurs in the first 1.3x108 years (<3x107 years to reach
transition).  Stretching the timescale increases the energy
deposited in the Moon (a factor of 2.7 for a uniform stretch) and
also increases the pretransitional orbital inclination. Stretching
can also delay the evolution of semimajor axis through the
transition distance if the Moon can extract as much power from
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the orbit as the Earth deposits, but the decreasing inclination ends
such a balance by reducing the power that the Moon extracts.
Tides may be a significant source of heating for the early Moon,
and much of that heating is deep.

During the spin transition a molten core comparable to that
existing today would generate peak power (10?7 ergs yr~!) and
accumulated energy similar to that from tides, but it would be
deposited in <1% of the lunar volume. The liquid core formation
history is not known. It may have originated during lunar
formation. Another possibility is that a small core was present
before transition, and the additional heating at the core-mantle
boundary increased melting and core size. Yet another
possibility is that the combination of heating by accretion,
radioactive decay, and tides first generated a liquid core or layer
before the Moon finished passing through the high-obliquity
event. Once the turbulent dissipation starts with high equatorial
tilt, that energy is deposited in a relatively small volume, and it
can promote further melting, fluid convection, and a dynamo (see
previous section). The unknown history makes the accumulated
turbulent energy very uncertain. The possible upper range of
energy densities would have caused a dramatic thermal event for
the core and the adjacent mantle region.

If the strongest remanent magnetism in lunar rocks
corresponds to the spin transition, then the timing is 5x108 years
late compared to a uniformly stretched tidal evolution timescale.
Of the Earth's present tidal dissipation, 97% is in the oceans. On
the earliest Earth the oceans were likely very different from now.
The heavy bombardment would have supplied volatiles, but the
largest impacts could remove atmosphere and ocean. For
comparison, basin-forming events occurred on the Moon between
3.8 and 3.9 billion years ago; earlier basins either have been
erased or were not sampled by missions. The early Earth was
heated by both impacts and core formation. Galer [1991]
considers that prior to about 3.8x10° years ago, the warmer
mantle would have prevented any continental masses from rising
above the elevation of oceanic rock as they do today. It is
plausible that intermittent oceans, less continental material, and
reduced height difference would make the early Earth less
effective at dissipating energy and evolving the lunar orbit
outward. Even without oceans on Earth, the Moon would evolve
outward owing to solid-body Q.

A qualification is in order. The preceding temperature
increments are useful for relative comparisons of energy
deposition, but strong heating of any part of the Moon can
promote solid convection at the expense of temperature increase
[Schubert et al., 1980], and any melting would absorb heat.
Starting a thermal model with a core 100°-200°C hotter than the
mantle, Konrad and Spohn [1997] and Spohn et al. [1999] find
that the early Moon had convection in the solid mantle. These
computations generate mantle plumes which, for upwelling
plumes, result in pressure release partial melting in the upper
mantle. This melt is available for volcanism. The results of these
two papers also seem appropriate if the initial excess core heat is
replaced with turbulent heating at the core-mantle boundary, and
Petrova and Gusev [1997] have suggested that a turbulent
interaction could also cause plumes. Konrad and Spohn also find
convection in the early lunar fluid core.

There are many uncertainties and concerns. It is not known
when the core becomes molten. Near the spin transition both
lunar tides and core dissipation cause large inclination changes,
so a large orbital inclination is possible before the transition, and
that increases both tidal and turbulent power deposited in the
Moon. Any stretching of the timescale makes these even larger.

If the present low tidal @ is due to a partial melt in the attenuation
zone, the earlier Q could have been very different before heating
or core formation.

The LLR fits of this paper indicate a present eccentricity rate
of 2.0x107! yr!.  The (Earth+Moon) theory predicts from
0.7x107!! yr=1 to about 1.0x107!! yr-! with dissipation in the
Moon canceling 40-50% of the effect from the Earth. This is a
serious discrepancy. Stretching the timescale for tidal evolution
of the orbit by reducing the dissipation in the Earth would make
the average eccentricity rate negative for much of the time of
evolution, on the basis of the theoretical calculations. However,
the unexplained anomalies in the eccentricity rate and its
computation make any extrapolation unclear. Higher eccentricity
in the past would increase the dissipation in the Moon. Goldreich
[1963] appreciated that dissipation in the Moon might reverse the
sign of the eccentricity rate. Recent studies such as Mignard
[1981] and Touma and Wisdom [1998] considered evolution for
several values of lunar dissipation, but variable orientation with
the spin transition was not modeled. The "problem” of a sizeable
initial orbit inclination is increased when lunar orientation is
included in calculations of dissipation and evolution. Tidal
evolution is reviewed by Peale [1999].

At the lunar surface, tidal displacements from the largest
monthly terms are ~0.1 m. Consequently, the Q of 37
corresponds to a few millimeters for the phase-shifted
components. Tidal displacement is presently detected (h, in
Table 11), but not with sufficient accuracy to see such effects.
For the solutions of Table 11 the Love number /, is constrained to
be 0.3 £,, the relation expected for a homogeneous elastic solid.

The lunar science discussion of Dickey et al. [1994] points out
that an oblate lunar core can bias the LLR solution values of k,.
Simple extrapolation of the seismic § wave mantle speeds
through the attenuation zone predicts k, values lower than the
LLR results by ~25% for the Nakamura [1983] S wave profile
and 15% for the Goins et al. [1981] profile. Lowering the S wave
velocities in the attenuation zone would increase the seismic
predictions. Given this paper's evidence for a fluid core, the LLR
values of k, may need to be reduced up to 25%. The solutions
for tidal dissipation are sensitive to k,/Q, so 1f the Love number is
reduced, all of the Q values would scale in proportion, but the
calculations of energy dissipation would be unchanged. Such a
systematic scaling is not included in the random uncertainties in
k, and tidal time delay in Table 11 and the Q values in the text or
Table 12. In principle, the &, determination could detect such a
scaling, but the present uncertainty 1s too large. Rotation
signatures due to an oblate core should be orthogonal to the
dissipation signatures and will be the subject of future study.

Damping of the free librations can be calculated from the
equations of this paper (sections 7 and 12) or Peale [1976]. For
the free libration in longitude the damping time is 2.7x10* years.
Most of the damping is from the tides, and the uncertainty in the
inverse is 50% (1/Q at 3 years in Table 12). The damping time
for the wobble mode is about 2.0x10° years and is dominated by
tides. The uncertain extrapolation of the tidal Q to 75 years
causes a 90% uncertainty for the inverse. The
precession/nutation mode damping is 1.65x108 years (15%
uncertainty) with core damping 70% and tidal damping 30%.
The energy in each free libration mode is proportional to the
amplitude squared. Amplitudes are taken from Newhall and
Williams [1997] and Williams et al. (2001). The free libration in
longitude has an energy of 9.6x10!6 ergs, and it is dissipating
7x10'2 ergs yr~!.  For the two latitude modes the energy is not
constant during one cycle, so an average energy is used here.
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The average in the wobble mode is 2.9x102! ergs, and the power
loss is 3x10'3 ergs yr-!. The small precession/nutation mode has
an average energy of 3x10!3 ergs and a loss of only
2x108 ergs yrl.

21. Summary

For 2 decades the analysis of Lunar Laser Ranging (LLR) data
has detected a displacement in the Moon's precessing pole of
rotation indicating energy dissipation. Two explanations have
been offered: tidal losses in the Moon and interaction at the
interface between a liquid core and solid mantle. The key to
distinguishing the two causes is small additional influences on
the rotation. Both numerical and analytical approaches are
considered.

The orbit and lunar rotation are integrated numerically with a
model for tides and fluid core. These numerical results are used
to calculate the range during data fits. The differential equations
for dissipation acting on rotation are set up (sections 2 and 3).
Analytical series solutions are also developed for both
interpretation and alternate fits. Section 4 continues the
development for series solutions, and section 5 presents the
series. Tables 1 and 2 give the dependence of each rotation term
on each periodic tide's Q. Evaluations are given for two
functions of tidal Q versus frequency: constant Q (Table 3) and Q
proportional to inverse frequency (Table 4). The most useful
terms influence the LLR data at periods of 1 month, 206 days,
1 year, 3 years, and 6 years. Tidal dissipation also damps free
librations (section 7) and causes secular orbit perturbations
(section 8, Table 6).

The mathematical model for a fluid-core/solid-mantle
interaction (section 9) sets the torque proportional to the angular
velocity difference between spinning core and mantle. This rule
is used for numerical and analytical approaches. As the mantle
orientation precesses in 18.6 years it induces a core precession,
but with much smaller tilt and an offset node (section 10). The
core orientation is closer to the ecliptic plane than to the mantle.
The core does not rotate at the same rate as the mantle, and this
causes a longitude offset for the direction of the principal axes.
The core dissipation causes the node of the equator plane on the
ecliptic and the pole direction to be shifted. The parameter K,
which relates torque to angular velocity difference, is discussed
in section 11. The X for turbulent coupling is a function of core
radius, fluid density at the boundary, and several other
parameters. Topography on the boundary may increase coupling.

For analytical investigation the coupled equations for core and
mantle rotation are developed (section 12). The separate rotation
of the core introduces core damping modes. The core modes
damp rapidly; ~140 years is estimated. Expressions for slower
damping of mantle free modes are also given. The forced terms
are derived (section 13, Tables 7 and 8), but the precessing pole
offset is by far the most observable core term. The forced terms,
including the pole offset, are mainly sensitive to K. A special
term, due to the secular motion of the ecliptic plane, is directly
sensitive to core moment rather than K (section 14). It offers
future possibilities to determine that moment.

Lunar core dissipation causes secular orbit perturbations
(section 15). For a given pole offset, perturbations from a core
are smaller than those caused by tides on the Moon. This
difference permits an orbit test for separating core and tidal
dissipation, with the eccentricity rate being the most useful of the
perturbations (section 16). Tides on the Earth also cause secular
orbit perturbations, so an orbit test is sensitive to more dissipation
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sources than a rotation test. At present, the lunar rotation is the
preferred test to distinguish dissipation from core and tides
(section 17).

Twenty-eight years of Lunar Laser Ranging data are used to
make solutions for dissipation effects (section 18). Numerically
generated partial derivatives and analytical coefficients are both
used as fit parameters (Table 11). All solutions indicate
substantial dissipation from both a molten core and tides. Four
dissipation coefficients are detected, and Plate 1 compares them
with calculations using tides alone and tides plus core. The core
parameter exceeds three times its uncertainty. Core-only
interpretations fare worse, failing by 9 6. The tidal Q at 1 month
is 37 (—4,+6), and at 1 year Q is 60 (-15,+30). If a power law is
used for Q versus frequency, the exponent is —0.19+0.13, so @
increases slowly with period. The orbit eccentricity rate from fits
is 2x107!! yr-!. This is two to three times the expected rate and
is not understood.

With turbulent core-mantle coupling the inferred core radius is
335 (-21,+17) km if it is assumed to be iron (section 19).
Because topography at the core-mantle boundary would increase
the coupling, the core radius is presented as a 1-G upper limit:
352 km for iron and 374 km for an Fe/Fe-S eutectic. Table 13
gives core parameters for a spread of possibilities: the two
extreme compositions and liquid cores with and without solid
inner cores. Other lunar science information is compatible with
or supports a presently solid or molten core.

The power drawn from the orbit and dissipated in the Moon is
(4.3:0.6)x10% ergs yr~! for tides and (1.9%0.5)x1022 ergs yr-!
for the core-mantle interaction (section 20). These are minor
compared to radiogenic heating. Deep-focus moonquakes are
thought to be triggered by tides and a small fraction of the tidal
energy is sufficient to power them. The low tidal Q is surprising.
The highest seismic damping is just above the core, and it has
been suggested that this is a zone of partial melt. It is plausible
that this zone dominates the tidal damping. Damping times for
the free librations are calculated from the core and tide
dissipation.

Both tide and core dissipation may have been significant heat
sources in the early Moon. The dissipated power would have
been high when the Moon was near the Earth and decreased as
the Moon evolved outward owing to tidal dissipation in the Earth,
but an additional peak would occur at about half the present
distance. A transition between two spin states would have caused
temporary high lunar obliquity and an increase in the energy
dissipation from lunar tides and core. Tidal dissipation could
have heated the central region by several hundred degrees. If the
tidal dissipation is localized in the attenuation zone adjacent to
the core, this region could have been heated even more. If the
lunar core was its current size, a similar amount of energy would
have been deposited in the smaller volume of the core-mantle
boundary. This early energy could have caused major thermal
activity in core and lower mantle, temporarily driving convection
in the fluid core and solid convection in the lower mantle and
powering a magnetic field. Thus the remanent magnetization in
lunar rocks, peaking circa 3.8x10% years ago during the time of
mare volcanism, may record the passage of the Moon through the
spin transition as the Moon evolved outward under the action of
the Earth.

Detection of an independently rotating molten core through its
drag on the mantle exceeds three times its uncertainty. The
association of high core dissipation during a change of spin state
with peak remanent magnetization is plausible but unproved.
There are ample opportunities for future investigation.

85USD| SUOLLILLIOD BANERID) 3|edldde 3L} Ag peuenob a.e SpILe YO 13N JO S3|NJ J0j Areiq1 T 8UIIUO AB]IM UO (SUORIPUCD-PUe-SWLR}W0D" AB| 1w AReJq 1 Bul|uo//SdNY) SUORIPUOD PUe SWwS L U} 855 *[1202/10/80] U0 A%iqi auljuo A8|im ‘puelAre N JO AisBAILN Ag 96ETO0IC0002/620T OT/10p/L0D Ao im AReiq1jput|uo'sgndnBe//sdny woiy papeojumod ‘TT3 'TO0Z '9202295Te



27,964 WILLIAMS ET AL.: LUNAR DISSIPATION IN MANTLE AND CORE

Appendix A: Spherically Symmetrical Distortion

In (8) the rotational potential was separated into degree two
and spherically symmetrical parts. To describe a body's elastic
response, the second-degree Love number k, is more familiar
than the spherically symmetrical parameter designated s in
sections 3 and 4. Love [1944] presented the displacement due to
the rotational potential ~2w?/3 for the incompressible
homogeneous sphere. Dahlen [1976] considered a more general
body. He gave differential equations for displacement, and he
also addressed the moment of inertia change. Working with
perturbed rotation (Aw? =2 @A®), Dahlen introduced a factor of
2 in his definition of displacement that is not used by Love.
Yoder et al. [1981] followed Dahlen, while Yoder [1982] used the
unperturbed potential with Love's solution. This appendix uses
Love's potential, considers the moment change, and presents
Love's displacement and the resulting moment change for the
homogeneous case.

For an incompressible homogeneous sphere with density p,
radius R, bulk modulus K, and shear modulus or rigidity p,
Love's solution (his article 175) for the radial displacement U(r)
using the spherically symmetrical rotational potential is

pw?R:r
15(K+4§

(5K+3p r_2 Al
U(r) = ) ik -/ @y

This problem is analogous to the self-gravitating sphere (Love's

article 98). The strain dU/dr reverses sign in the interior. The
displacement at the surface depends on K, but not p.

2p 0 R?

URY="45k

(A2)

Dahlen [1976] defined a parameter d0 that with the U here would
be 3g(R)UR)/ ®?R%, where g(R) is the surface gravitational
acceleration (1.623 m s~2 for the Moon).

A solid's mass element dm = 41 r2p dr is invariant to spherical
distortion. Evaluate the moment of inertia from the integral

5 (R
3 I (r+U@®)? dm. (A3)
0

For small distortions the change in the moment is
16n R ,
Al = EN p(n U(ryr dr. (Ad)
0

The moment matrix change is A/ times the identity matrix. To
put A/ into the form of (9) and (12), define

16nG
T RS

R
J p(n Ur) P dr. (AS)
0

This looks like Dahlen's [1976] expression for ng, but his U(r)
has an additional factor of 2, so s = ny/2.

For a homogeneous sphere, use a constant density and the
displacement (A1) in the integral of (A5).

16GMp (5’“—“)
RE (., gu)

Note that GM/R =g(R)R = vzc where v, is the surface circular
orbital speed (1.680 km s~! for the Moon). When the above

5= (A6)

result for s is doubled, it agrees with Yoder's [1982] value for n,,.
The elastic parameters are related to the P and S wave speeds:

(K+ u)

(A7)
p
v = Jp‘—_ (A8)

While k, is sensitive to Vg and the shear modulus p, both speeds
and both elastic parameters influence s. The phase shifts and
specific dissipation ( parameters associated with s are not
expected to be the same as those for k,.

The seismic speeds are well determined in the upper zones of
the Moon but uncertain for the deepest regions [Goins et al.,
1981; Nakamura, 1983; Khan et al., 2000]. For computation,
Vo= 44kms ! and Vo= 7.8 kms~! are used here. The Love
number k, should be between 0.02 and 0.03, and both s and 4,
should be about 0.010-0.012. The spherical radial displacement
of the lunar surface is ~5 cm owing to the rotation. For
comparison, a Love number h, = 0.04 causes the surface at the
pole to decrease 18 cm and the equator to increase 9 cm (ignoring
the question of whether this Love number is appropriate for the
static part of the distortion). The net surface change is 13 cm
downward at the pole and 14 cm outward at the equator. The
relative change of rotation rate Aw/® is ~10~%, so the spin-
induced surface variations are ~0.03 mm. By contrast, tides
raised by the Earth are ~0.1 m, while those raised by the Sun are
2 mm.

The time variation of tidal distortion greatly exceeds the
variation of spin distortion, and the effects on rotation are
similarly stark. The largest rotation effect due to s displaces the
pole by (Ap,, Ap,) = -0.05" s (sin F, cos F). The largest tidal k,
effect is (Ap,, Ap,) = 74" k, (sin F, cos F). The s pair of terms
comes from the constant part of A/ and would disappear if the
mean moments were put in the "rigid" moments A, B, and C. The
k, pair is dominated by variable moment effects. The largest
dissipation term in longitude from s is 0.003" (s/Q) cos 2(F-#),
very small compared to Tables 14 for k,/Q. Consequently, the
Love number k, and associated Q values can be determined from
analyses of Lunar Laser data while the effects of s and s/Q are
too small to fit those parameters.

Appendix B: Toroidal Distortion

Acceleration of the rotation will cause forces on a body. In the
rotating coordinate system the acceleration is rx®. The resulting
distortion is toroidal about the axis of spin acceleration. Bills
[1995] suggested that the toroidal distortion could be mimicking
rotation and corrupting fits of the Lunar Laser ranges, but he did
not compute its size. Yoder [1982] computed the form of the
distortion solution for the homogeneous case. Below, Yoder's
solution is modified to give distortion without a change in
rotation.

Yoder [1982] gives the solution for the incompressible
homogeneous sphere. The acceleration ® causes a twisting
distortion about the axis of angular acceleration. Here the
particular solution is chosen so that the acceleration-induced
distortion does not modify the angular momentum. For a
distortion vector U and mass element dm, set [ rxU dm =0.
Restricting our interest to periodic variations of the magnitude of
®, there results
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_P_ 3 ;
U@ = on (r2—7 Rz)rxm. (B1)

The notation for density, shear modulus, and radius are the same
as used for the spherical distortion. The reversal of sign in the
interior keeps the angular momentum from changing. The
distortion at the surface is

R2
UR) = ES_p Rx®. (B2)

The surface distortion does look like a rotation about the angular
acceleration axis and it can mimic a rotation, but the distortion
with depth only resembles solid rotation for the particular
solution.

The two largest accelerations of the body-referenced spin axis
are from the monthly variation of physical libration in longitude
and a periodic variation of the precessing spin pole direction with
respect to the body z axis. The resulting distortion at the surface
expressed in micrometers is

UR) =—4 Rxk sin £+ 12 Rxj sin F. (B3)

The unit vectors j and k are in the direction of the y and z body
axes, while the unit R vector is toward a surface point such as a
lunar retroreflector. The toroidal distortion is not a significant
influence on the LLR fits and is not large enough to warrant
modeling.

Notation

a orbital semimajor axis of Moon.

a, b amplitudes in section 13; subscripts s, ¢ mean sine
and cosine components.

a, b core amplitudes in section 13; subscripts s, ¢ mean
sine and cosine components.

A B C constant lunar moments of inertia.

C’' core moment.

C,,, G,y  second-degree gravity harmonics of Moon.
mean elongation of Moon from Sun.
D with subscripts L, w, p, a damping coefficient.
e orbital eccentricity for Moon.
E combination of parameters used in (28) and

separately in (52); Earth mean longitude in Table 7.
mean argument of latitude of Moon.
core fraction for precession offset.
forcing terms in differential equations.
gravitational constant.
gravitational acceleration.
forcing amplitude for longitude libration.
2 vertical displacement Love number.
o subscripts are indices running 1-3.
orbital inclination of Moon to ecliptic, 5.145°%;
imaginary in section 13.

Lo Qe
<
&

>

~—

1 mean tilt of lunar equator to ecliptic, 1.543°.

r mean tilt of core equator to ecliptic plane.

I moment of inertia matrix.

I core moment of inertia matrix.

Ingid moment of inertia matrix, rigid body part.

Lige moment of inertia matrix, tidal deformation.
spin moment of inertia matrix, spin deformation.

J, second-degree gravity harmonic of Moon.

ky potential Love number.

ke fluid Love number.

K

® =
b
&~

>

>R R X <
==
N

-~

PP
4
P

a < <A
-]
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core-mantle coupling parameter; sometimes used
with subscripts t and v.

horizontal displacement Love number.

mean anomaly of Moon.

mean anomaly of Earth-Moon orbit about Sun.
mean longitude of Moon.

mean longitude of Sun with respect to Earth-Moon
center of mass.

mass of Earth; Mars mean longitude in Table 7.
mass of Moon.

mean motion of Moon.

mean motion of Earth-Moon orbit about Sun.

orbital semilatus rectum for lunar orbit.

physical libration in latitude; overdots are time
derivatives.

core physical libration in latitude; overdots are time
derivatives.

power; fit parameter in section 17.

average power.

second Legendre function.

specific dissipation for tides; various subscripts
indicate frequency.

distance from Moon.

position vector from Moon to Earth or Sun.
abbreviation for root-mean-square.

radius of Moon, 1738 km; range in section 17.

radius of lunar core.

range vector from an observatory on the Earth to a
retroreflector on Moon.

vector for geocentric ranging station.

vector for selenocentric retroreflector position.
spherical spin parameter.

numerical factors.

second-degree gravity harmonics of Moon.
third-degree gravity harmonics of Moon.

time.

torque vector.

torque vector, second-degree contribution.

torque vector, core contribution

unit vector from Moon to Earth or Sun.

components of unit vector from Moon to Earth or
Sun in lunar body-fixed coordinates.

unit vector to point on lunar surface.

matrix components, (a/r) u; uj.

core-mantle relative velocity vector at boundary.
Venus mean longitude in Table 7.

tidal potential.

spin potential.

exponent in Q versus frequency power law.
coordinates.

forcing amplitudes in section 13.

Moon centered reflector coordinates in section 17.
(C-B)/A.

(C-A)/B.

(B-A)IC.

delta function.

used to indicate a change, e.g., Ag, Ae, and An.

time delay.

determinants.

fluid core parameter, equation (58).

frequency; kinematic viscosity of core in section 11.
frequency of free precession, a resonance frequency.
mathematical symbol for pi.
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o

ecliptic longitude of axis of ecliptic plane rotation,
174.87° at J2000.
fluid core density.
physical libration angle.
physical libration angle.
physical libration in longitude.
core physical libration in longitude.
angular velocity.
angular velocity vector.
®,, W, angular velocity components.
core angular velocity vector.
unit angular velocity.
mean longitude of perigee of lunar orbit.
mean orbital node of Moon; overdots are time
derivatives.
combination of parameters for core computations,
dimensionless, section 10; in section 13 it is used
with subscripts L and v.
g combination used with tides; see equation (25).
0.0,y Euler angles for lunar orientation; overdots are time
derivatives.
Euler angles for core orientation; overdots are time
derivatives.

o

£8egaam

B

oo ae

9,0,y

Mathematical Operations

d derivative.

) partial derivative.

\% mathematical symbol for gradient.

X mathematical symbol for cross product.

. mathematical symbol for dot product; overdots are
time derivatives.

* indicates time delayed, e.g., fn* = fn(-At); used for
complex conjugate in section 12.

%, summation.

J integral.

Units

" seconds of arc

' minutes of arc

Appendices

d Dahlen'’s spherical displacement parameter.

Jk unit vectors.

K bulk modulus.

ng Dahlen's spherical spin parameter.

r radius to point in Moon.

R vector to point on surface.

R unit vector to point on surface.

Ur) elastic displacement.

o Vg P and § wave speeds.

v, circular orbit speed.

Al change in moment of inertia.

u shear modulus or rigidity.

P density.
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