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Lunar rotational dissipation in solid body and molten core 
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J. Todd Ratcliff, and Jean O. Dickey 
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Abstract. Analyses of Lunar Laser ranges show a displacement in direction of the Moon's pole of 
rotation which indicates that strong dissipation is acting on the rotation. Two possible sources of 
dissipation are monthly solid-body tides raised by the Earth (and Sun) and a fluid core with a 
rotation distinct from the solid body. Both effects have been introduced into a numerical 
integration of the lunar rotation. Theoretical consequences of tides and core on rotation and orbit 
are also calculated analytically. These computations indicate that the tide and core dissipation 
signatures are separable. They also allow unrestricted laws for tidal specific dissipation Q versus 
frequency to be applied. Fits of Lunar Laser ranges detect three small dissipation terms in 
addition to the dominant pole-displacement term. Tidal dissipation alone does not give a good 
match to all four amplitudes. Dissipation from tides plus fluid core accounts for them. The best 
match indicates a tidal Q which increases slowly with period plus a small fluid core. The core 
size depends on imperfectly known properties of the fluid and core-mantle interface. The radius 
of a core could be as much as 352 km if iron and 374 km for the Fe-FeS eutectic composition. If 
tidal Q versus frequency is assumed to be represented by a power law, then the exponent is 
-0.19_+0.13. The monthly tidal Q is 37 (-4,+6), and the annual Q is 60 (-15,+30). The power 
presently dissipated by solid body and core is small, but it may have been dramatic for the early 
Moon. The outwardly evolving Moon passed through a change of spin state which caused a burst 
of dissipated power in the mantle and at the core-mantle boundary. The energy deposited at the 
boundary plausibly drove convection in the core and temporarily powered a dynamo. The 
remanent magnetism in lunar rocks may result from these events, and the peak field may mark the 
passage of the Moon through the spin transition. 

1. Introduction 

The Moon keeps one face toward the Earth. This simple 
statement of the equality of the rotational and orbital periods has 
a deeper implication. Since there is no reason to expect that the 
Moon formed in such a special rotational state, there must have 
been one or more mechanisms for changing the lunar rotational 
angular momentum and energy. 

Laser ranges from the Earth to the Moon started in 1969. The 
analyses of laser ranges discovered active lunar rotational 
dissipation nearly a decade later, and during the past 2 decades 
the detection has improved [Yoder et al., 1978; Ferrari et al., 
1980; Cappallo et al., 1981; Dickey et al., 1982; Williams et al., 
1987; Dickey et al., 1994]. The Mooifs rotation is locked in a 
spin state (Cassini state) such that the 18.6 year retrograde 
precession of the lunar equator plane along the ecliptic plane 
matches the precession of the lunar orbit plane. In the absence of 
dissipation the equator's average descending node aligns with the 
orbit's average ascending node. Laser range analysis finds an 
average shift between the two nodes which indicates ongoing 
dissipation. The presently measured shift is -9.8" in the node of 
the equator on the ecliptic equivalent to an arc length shift of 
0.263" in the pole direction. The arrangement and precession of 
spin and orbit poles is shown in Figure 1. Over the past 
2 decades the significance of the pole shift has improved from the 
first detection to the present 1% uncertainty. 

Copyright 2001 by the American Geophysical Union. 

Paper number 2000JE001396. 
0148-0227/01/2000JE001396509.00 

There are two proposed mechanisms for the lunar rotational 
dissipation: solid-body tidal dissipation [Yoder, 1979; Cappallo 
et al., 1981] and dissipation at a liquid-core/solid-body boundary 
[Yoder, 1981 ]. Tidal dissipation must exist for the Moon at some 
strength. Core dissipation requires a fluid lunar core. While 
there are several reasons to suspect that a core is present (see 
section 19), and the recent Lunar Prospector mission has 
strengthened the evidence, the consequences of a small core are 
subtle, and it has remained unclear whether it is solid or liquid. 

Both tidal and core dissipation can displace the equator plane 
in the observed manner. In the past it has not been possible to 
distinguish between them. Improvements in the range accuracy 
and increasing data span now make it possible to use small 
additional signatures to discriminate. 

This paper explores the two dissipation models used for 
numerical or analytical computation of the lunar rotation 
(sections 2 and 3 for tides and section 9 for core). It presents 
analytical developments for the effect of each model on the 
rotation (tides: sections 4, 5, 7, core: sections 10, 12-14) and 
orbit (tides: section 8, core: section 15). Results from fits to the 
Lunar Laser Ranging (LLR) data using the two dissipation 
models are presented ( section 18). Results are discussed and 
compared with other evidence on the lunar interior (sections 19 
and 20). 

2. Rotational Dynamics 

The attraction of the Earth and Sun on the nonspherical figure 
of the Moon applies torques. The Earth dominates the torques. 
As a consequence, the lunar equator plane precesses along the 
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The torque T includes the gravitational interaction of the lunar 
figure with external bodies. In the integration model these are 
Earth, Sun, Venus, and Jupiter. For a spherical attracting body, 
the second-degree torques depend on I and take the form 

3GM 

T 2 = r5 rxIr. (2) 

M is the mass of the attracting body, and r is its position with 
respect to the Moon's center. G is the gravitational constant. In 
the Jet Propulsion Laboratory (JPL) model, additional torques 
come from third- and fourth-degree lunar gravitational harmonics 
and figure-figure interactions (triaxial Moon with oblate Earth). 
Since the orbits used for torque computation include the 
influence of gravitational harmonics, planetary perturbations, and 
relativity, the torques include indirect effects due to those 
perturbations. The lunar orientation is required to compute the 
torques, and the body-referenced angular velocities depend on the 
Euler angles and their rates. 

/-q/sin0 sintp - {3 cøstP / ß ß 

to= -• sin0 costp + 0 sintp . (3) 

• cos 0 + (p 

Figure 1. The spin axis and orbit normal precess in 18.6 years 
about the ecliptic pole in a retrograde direction. Without 
dissipation the three poles would be coplanar. Dissipation in the 
Moon causes a small displacement of the spin pole orthogonal to 
that plane. 

ecliptic plane in 18.6 years (tilt 1.54 ø) with a superimposed 
sequence of periodic variations in pole direction, and the rotation 
is synchronous with variations in rotation about the polar axis. 
Much of the sensitivity of the LLR data to lunar science 
information comes through this time-varying three-dimensional 
rotation of the Moon called physical libration. These parameters 
include the moment of inertia combinations [•=(C-A)/B and 
¾=(B-A)/C, seven third-degree gravitational harmonics, 
dissipation due to solid-body tides and core, and Love number k 2. 
Dickey et al. [1994] review the Lunar Laser-Ranging technique 
and results. 

The range accuracy has improved with time, and the most 
recent data are fit with a 2 cm rms residual. A highly accurate 
model for the orbit and rotation of the Moon is needed to fit the 

lunar ranges. The orbits of the Moon and planets and the rotation 
of the Moon are simultaneously numerically integrated. The 
lunar initial conditions for these integrations and the parameters 
of the previous paragraph come from least squares fits to the 
lunar range data. 

The numerical integration of the lunar rotation requires the 
equations of motion and a model for torques. The orientation of 
the Moon is specified by three Euler angles. The angular 
velocities are computed from the Euler angles and their rates. 
The lunar rotation is computed from differential equations for the 
angular momentum. The vector differential equation is the Euler 
equation when expressed in a frame rotating with the body 
(Moon): 

d(Ito) 
+ taxIt0 = T. (1) 

I is the moment of inertia matrix, ta is the angular velocity vector, 
and t is time. The angular momentum vector is the product Ito. 

In the JPL numerical integration model the Euler aiqgles consist 
of a node-like angle • from the J2000 equinox along the J2000 
Earth's equator to the descending node of the lunar equator, a tilt 
0 between the two equators, and an angle (p from the node along 
the lunar equator to the lunar zero meridian. For analytical 
calculations it is more useful to give Euler angles defined so that 
the Earth's equator plane replaces the ecliptic plane in the 
foregoing sequence of three angles. Equation (1) is equivalent to 
three second-order, nonlinear differential equations for the Euler 
angles. 

Tidal effects cause I and the gravitational harmonics tO be time 
varying. This will be described in the next section. If there is a 
fluid core, then in addition to (1) a vector differential equation is 
needed to describe the core rotation. There would be torques 
from interactions at a core-mantle interface which must be 

applied with equal magnitude and opposite sign to the mantle and 
core (section 9). 

3. Computational Model for Tidal 
and Rotational Deformation 

In addition to causing torques, the attraction of the Earth and 
Sun also raises tides on the Moon. The time-varying tidal 
distortion of the Moon changes both the moments of inertia and 
the torques, thereby modifying the rotation. Spin also distorts the 
Moon, and that time-varying deformation can be treated along 
with tides. 

The Moon must be distorted by solid-body tides. The elastic 
tidal response of the Moon is modeled with Love numbers. The 
amount of anelastic tidal dissipation is not known a priori, but 
dissipation must be present. Consequently, for 2 decades a tidal 
dissipation model has been used to fit the observed lunar 
dissipation for Lunar Laser range data analysis. A time-varying 
expression for the lunar moments of inertia is used ii• the 
program which numerically integrates the rotation of the Moon 
and the orbits of the Moon and planets. 

An early theoretical investigation by Peale [1973] of elastic 
tidal effects on rotation about the pole concluded that the effects 
were small, but he did not find the larger effect in pole direction. 
Analytical theories for both elastic tides and tidal dissipation 
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have been presented by Yoder [ 1979] and Eckhardt [ 1981 ]. Bois 
and Journet [1993] attempted a numerical approach. An 
equation for time-delayed lunar moments of inertia is used by 
Newhall and Williams [1997] for numerical LLR data analysis. 

The moment-of-inertia expression can be split up into a fixed 
part, a part for tidal deformation, and a part for spin-related 
distortion: 

I = Irigid + Itide + Ispin. (4) 

In the principal axis system the rigid-body principal moments of 
inertia are A<B<C. The first axis, associated with A, is 

approximately toward the Earth, and the third axis, associated 
with C, is nearly in the direction of the spin vector: 

Irigid = 0 B 0 . (5) 
0 0 C 

The rigid-body moments are used to define ½z=(C-B)/A, 
[•=(C-A)/B and ¾=(B-A)/C. Only two are independent with 
o•=([3-¾)/(1-[3¾). Those relative differences and the ratios 
A/C=(1-[3¾)/(1+[3) and B/C=(1+¾)/(1+[3) can be determined 
much more accurately than the moments of inertia. 

The tides affect the moments. The second-degree tide-raising 
potential at a point on the lunar surface (Moon-centered unit 
vector u') is 

GMR 2 

Vtide = r3 P2(u.u'). (6) 

For the tide-raising body, M is the mass, and r is its Moon- 
centered position vector (components r i, distance r, unit vector 
u=r/r, components ui). For the Moon, R is the radius 1738 km. 
P2(u.u') = (3/2)[(u.u')2-1/3] is the second-degree Legendre 
polynomial. To calculate forces, the positive gradient of (6) is 
taken with respect to the position Ru' (potential sign convention 
is plus for the point mass potential). Along the Earth-Moon line 
the acceleration is outward from the Moon. For the tidal part of 
the moment the nine matrix components (indices i, j) are 

k 2 M R s •i[ ) (7) /tide, ij = - r• ( u i ttj - 3 ' 
where k 2 is the second-degree potential lunar Love number and 
the delta function 15ij modifies the diagonal components. 

An elastic body will also distort from rotation. In a rotating 
Irame the additional potential at the surface is separated into two 
parts: one spherically symmetric and the other multiplying a 
second-degree spherical harmonic. 

R 2 032 
Vspin = -•• [ 1 -P2(u"•0) ] . (8) 

The an•gular velocity vector is to (components 03i' scalar 03, unit 
vector to). Distortion from both parts of the potential contributes 
to the moment of inertia components. 

_ R s 032 /spin, g- 3G [k2 (03i03J---•80 ' )+s03280' ]' (9) 
The Love number k 2 and the spherical parameter s depend on the 
elastic properties of the Moon. See Appendix A for a discussion 
of the spherical term. Rotational acceleration can also distort the 
Moon. These distortions are shown to be small in Appendix B. 

Since 033/03 = 1 and rl/r = 1, there are static-deformation 
contributions to both the spin and tidal parts of the moments. It is 

a matter of definition whether such constant parts are left in the 
tidal and spin parts of the moments or moved to the "rigid" part. 
In the work by Newhall and Williams [1997] the average values 
of the three diagonal terms of the spin part were nearly nulled by 
ignoring the s term and adding to the diagonal n2/3, n2/3,-2n2/3, 
respectively, inside the parenthesis of (9). Here n is the sidereal 
mean motion. This is a wise choice for a rapidly spinning object 
like the Earth, where significant oblateness is caused by spin, but 
for the slowly rotating Moon the spin-induced oblateness is 
smaller than the permanent figure and either choice is reasonable 
(see section 6). 

In the tidal and spin parts of I, the position r and spin rate to 

are functions of time. If the moments Itide and Ispin are evaluated 
using r(t) and to(t), respectively, then the elastic response of the 
Moon will be accounted for in the resulting rotation. The 
sensitivity of the LLR analysis to the Love number k 2 comes 
through these terms. Tidal and spin dissipation effects arise if the 
distortion is not an instantaneous response. In the program which 
numerically integrates the rotation and orbits the tidal dissipation 
is introduced with a time delay At by using r(t-At) and tO(t-At) 
when computing the distorted moments. In the differential 
equations (1) and the torque (2) it is I which is time delayed. The 
time-delayed position and spin rate appear only in the moments 
and not in the tO explicit in (1) or the r explicit in (2). With an 
analytical expansion more generality can be introduced through a 
separate time delay, or, equivalently, a separate phase shift, for 
each periodic term in the moments. Such an analytical solution 
will be developed in the next section. 

Some numerical values can be assigned to the above effects. 
The model used for the lunar and planetary ephemeris DE403 
included tidal dissipation but not core dissipation, so the DE403 
solution generated in 1995 represents a limiting possibility with 
the Love number k 2 = 0.0300, the time delay At = 0.1673 day, 
and the polar moment normalized with the lunar mass and radius 
C/mR 2 = 0.3944. With these values the ratio of the tidal moment 

factor to C is (k2MR5/Ca 3 ) = 5.7x10 -7, where a = 384,399 km 
is the semimajor axis of the lunar orbit. Similarly, take the 
common factor in (9) with 03=n (for constant part) and 

normalize by C to get (k2n2RS/3GC)= 1.9x10 -7. The time 
variation is even smaller than these values. The direction of the 

Earth as seen in the lunar principal axis frame varies 0.1 radian in 
both the north-south and east-west directions. The eccentricity e 
of the lunar orbit is 0.055, so that the (a/r)) tidal factor varies by 
3e. The spin rate direction varies <0.001 radian with respect to 
the principal axes, and the spin rate relative magnitude varies 
about 10 -4. Thus the relative time variation of the moments is of 

order 10 -7 for tides and 10 -lø for spin. The relative variation due 
to time delay is smaller yet since it involves the factor nat, which 
is 0.039 = 1/26 for DE403 values. 

4. Tidal and Rotational Dissipation: 
Analytical Development 

What are the dynamical consequences for the rotation angles 
of the tidal and rotational deformation and dissipation? Series 
solutions with numerical coefficients have previously been given 
by Yoder [1979] and Eckhardt [1981]. The results depend on 
how the specific dissipation Q varies with deformation 
frequency. The specific dissipation used here is a whole-body Q, 
and just as k 2 depends on elastic properties of lunar material as a 
function of radius, k2/Q is a function of the distribution of 
internal dissipation. The numerical model with constant time 
delay is equivalent to Q proportional to 1/frequency. For the 
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values of time delay and k 2 given in the previous paragraph, 
Q = 26, which, as will be seen below, is for a 1 month period. 
Yoder gives series for the inverse frequency case, and he gives 
the difference between series for that case and a constant Q case 
(no frequency dependence). Eckhardt gives series for the 
constant Q case. The solution in this and the next section will 
have a separate Q for each deformation frequency. Thus the 
coefficients of each periodic term in the rotation series can be 
functions of more than one deformation frequency. 

The torque expression (2) involves uxIu/r 3, where the unit 
vector u=r/r. The Euler equation (1) involves toxIto. 
Restricting the following development to the second-degree 
torques and tides yields 

d(Ito) 3 G M 
dt = - toxlto + r3 uxlu. (10) 

The tidal and spin pans of I depend on r, u, and to. With a dyad 
form for products of components the moment matrices can be 
written as 

1 
Itide =- r3 ( uu-•- i ), (11) 

R s 03 2 

Isp in= 3G [ k2(ø•ø•---• - i) +s032i ]' (12) 
where i is the identity matrix. It is immediately evident that the 
parts involving the identity matrix will disappear in the cross 
products. With dissipation the tidal and spin deformation parts of 
I have delayed responses. An asterisk is used to distinguish the 
parameters which originate from I. These include parameters of 
the tide-raising body, which may be different from the torquing 
body, and time-delayed quantities. Then (10) becomes 

d(Ico) 3 G m 
dt + •XIrig id • - r 3 UXlrigid U = 

k2RS [ 3GMM* M - r3 r* 3 uxu* u.u* + 7 ux•* u.•* 

M* 1 ] q- • {0xu* {0-u*- •--• {0x•* (0'{0' . (13) 

When the tide-raising body and the torquing body are the same, 
the asterisk indicates the time-delayed parameters and M*=M. 
When the tide-raising and torquing bodies are different, the 
asterisk indicates the time-delayed parameters of the tide-raising 
body and the right-hand side requires sums over the bodies (two 
sums for the first term and one sum for each of the second and 

third terms). 
Note that if there is no dissipation (r=-r*, u=u*, and 

and the tide-raising and torquing bodies are the same (M=M*), 
then the first and fourth terms on the right-hand side of (13) are 
zero because of the cross products and the second and third terms 
cancel. Without dissipation, not only does a bulge directly under 
the attracting body exert no torque (first term on fight-hand side), 
and not only is the apparent torque (-t0xIt0) from working in a 
rotating frame unable to interact with the spin-induced 
deformation (fourth term), but the torque from the spin 
deformation (second term) and the apparent torque from the tides 
(third term) cancel one another. In the rotating frame the same 
tide-plus-spin forces which elastically distort the Moon cannot 
also apply torque on that deformation since they are aligned. In 
an inertial frame the attracting body does apply torque on the 
rotation-caused bulge. The time variation of the angular 

momentum It0 in the rotating frame is not altered by the elastic 
deformations, but the rotation rates and Euler angles are still 
influenced because of the time variation of I in that product. 

Another piece of information can be gleaned from (13). For 
multiple bodies raising tides and causing torques, there would be 
sums over the bodies (briefly use a subscript for the body): two 
sums in the first term on the right-hand side and one in each of 
the second and third terms. Without dissipation, for every term 

M n UnXt0 there is a term M n t0xu n which cancels it, and for every 
M n Mtn UnXU m there is a MmM n UmXU n. For a constant Love 
number, multiple attracting bodies cannot alter the angular 
momentum in the rotating frame through deformations without 
dissipation. 

With dissipation the four deformation terms on the right-hand 
side of (13) are nonzero. The important torque terms arise from 
the Earth interacting with Earth-raised tides, while the Sun is 
only a minor influence. In component form the functions 

Uij = (a/r) 3 tx i txj and 03i 03j In2 are needed. The diagonals of the 
functions give (a/r) 3 and 032 which occur in I in the derivative 
on the left-hand side of (13). (The radius r is conveniently 
normalized by the semimajor axis a, and the spin is normalized 
by the mean motion n.) The series for these functions were 
developed using the lunar orbit theory of Chapront-Touzd and 
Chapront [1988, 1991] and the physical libration series by 
J. G. Williams et al. (manuscript in preparation, 2001) 
(hereinafter referred to as Williams et al., 2001). The functions 
with and without phase shifts/time lags are multiplied together to 
represent the four terms on the right-hand side of (13). When 
written out in component form, each of the three vector 
components of the differential equation has 24 terms on the right 
side, and each term has a series expansion. Economy of effort is 
achieved by combining the second-degree functions from Earth, 
Sun, and spin into one matrix. The coefficients are in proportion 
to the -M/a 3 and n2/3G that can be deduced from (7) and (9). 
Then the 24 terms for each component (54 if the Sun is included) 
can be replaced with six. 

Since u 1--1 and 033/n -- 1, the larger deformation terms involve 
these components. As an example, the most important pair of 
terms on the right-hand side of the third component of the vector 
differential equation (13) is 

_ k2 Rs 3 G M 2 , , aS [UiiUi2-Ui2Ull ]. (14) 
Without dissipation this pair of terms will cancel, but with 
dissipation a component multiplying a phase shift is selected for 
each periodicity. The u 2 depends on orbit and physical libration 
variations, with the dominant periodic terms from the longitude 
variations of the lunar orbit. The largest of these is the monthly 
(27.555 days) eccentricity-caused term depending on mean 
anomaly g, approximately 2esin •. With this term as an 
example, the brackets in (14) plus a smaller contribution (indices 
2212) yield 

22,000" ( sin •* - sin • )-- 22,000" ( •* - g ) cos g. (15) 

For a positive frequency a positive time delay corresponds to 
a negative phase shift and a positive specific dissipation Q 
so ( •* - g )-- -1/Qtj. Terms of the form of (15) arise from a 
constant torque coefficient multiplying a periodic deformation, 
minus a periodic torque times a constant deformation. Other 
terms result when a periodic torque multiplies a periodic 
deformation, and a constant results when the periods are equal. 
The phase for constant terms enters directly as a difference, e.g., 
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sin(g*-e), while mixes of different periods give arguments with 
angles mixed together, e.g., sin(2F*-e*-e)- sin(2F-e-e*). 

The factor GM/a 3 is ubiquitous, and for analytical computation 
it is useful to relate it to sidereal mean motion n. Kepler's third 
law is modified for solar attraction [Brouwer and Clemence, 
1961, chap. 12], and 1/a is set equal to the time-averaged 1/r for 
the perturbed orbit: 

GM_ n2 1+ (16a) 
a 3 - 2 n 2 (M+m) ' 

GM 

a 3 -- 0.9906 n 2 . (16b) 

terms which depend on the mean anomaly result from the radial 
variation and the variation in orbit longitude. Consequently, 
forcing terms proportional to e sin i have arguments 
(1/2 month period) and F-e (2190 days = 6.0 years). The 
strongest forcing functions for rigid or deformed motion of the 
lunar pole have arguments F, F-e, and F+e. 

The influence of deformation on the pole direction, the latitude 
physical librations, is calculated using two orientation 
parameters. The P l and P2 parameters are the x and y coordinates 
of the ecliptic pole, respectively, using the lunar principal axis 
frame: 

P 1 = -sin 0 sin {p, (18a) 

where n' is the mean motion of the Earth-Moon center of mass 

about the Sun. The Earth/Moon mass ratio is M/m = 81.3006, 
and for R = 1738 km the ratio R/a = 1/221.17. 

The third component of the differential equation (13) describes 
the rotation about the polar axis. This rotation angle nearly 
follows the mean Earth as seen from the Moon, the Moon's 

orbital mean longitude L plus 180 ø. The small remaining part, 
the "longitude" angle of physical librations, is called •:. For the 
ecliptic definition of Euler angles in section 2, ½+•t = L+'r+180 ø. 
The theory of the lunar rotation with torques on the lunar figure is 
a classic problem [Eckhardt, 1981; Moons, 1982a, 1982b; 
Petrova, 1996]. While the differential equations for rotation are 
nonlinear, a linearized form gives a good first approximation. 
For the present purpose, use 03 3 = n + :r, ignore the small 031032 
term, extract a linear q: term from the rigid-body torque, and treat 
the remainder of that torque as a forcing function. Then the polar 
component of the differential equation becomes 

ß 

C(':r + 3 ¾n 2 'r ) + •3 n =f: (17) 

The forcing term f_ includes both the rigid-body forcing (without 
.,. 

linear 'r term) and the right-hand side of (13). The solution from 
the rigid-body forcing is not an objective here but is treated in the 
above three references (also see section 13). The resonant 
frequency n ( 3 ¾ )1/2 for the longitude variable has a period of 
1056.1 days (including a correction factor S 3 =0.9759 and 
adjustment for third-degree harmonics discussed by Williams et 
al. (2001)). As an example, the resulting solution with the 
forcing term proportional to (15) is-1.3" (k2/Q 0 cos e, but there 
is a small correction from the derivative of •33, and the final 
contribution to 'r is -1.1" (k2/Qt,) cos g. With the DE403 solution 
values the coefficient is-0.0012" or -1 cm at the lunar equator, 

which projects into a few millimeters in range. 
The solution of the differential equation (17) for a periodic 

forcing term amplifies longer periodicities more than monthly 
terms. Libration amplitudes larger than the monthly example 
occur for annual, 206 day, and 1095 day periods. The latter 
requires the most care since it is near the resonance. Dissipation 
also induces a constant offset of 'r which is larger than any of the 
periodic terms. Solar influences decrease the constant coefficient 
by 0.2%. The derivative of I plays only a minor role for 
longitude librations because it favors fast terms, while the 
solution of the differential equation favors slow terms. 

The mean lunar orbit plane is inclined 5.145 ø to the ecliptic 
plane. The resulting ecliptic latitude motion of the Moon 
depends on the angle measured from the node, with period 
27.212 days, and the polynomial representation of the angle is 
denoted F (=L-• or mean argument of latitude). The leading 
term for ecliptic latitude is 5.13 ø sin F, and this gives the 
strongest forcing term for the lunar pole. Additional forcing 

P2 = -sin 0 cos {p. (18b) 

The differential equations for Pl and P2 are coupled together [see 
Eckhardt, 1981 ]. The linear approximation to (13) comes from 
taking 033 constant, expressing the first two angular velocity 
components as functions of Pl and P2 and their derivatives, and 
extracting a linear term in P l from the rigid-body torque term 
(second component): 

A ( •2 + n (1-ct)Pl + ctn2p2 ) +)13 n =fx, (19a) 

B(-fil +n(1-•)ib2-4[•n2pl ) +/23 n =fy (19b) 

The forcing functions about the x and y axes have been multiplied 
by the cosine of the equator's 1.54 ø tilt to the ecliptic plane 
to give fx and fy, respectively. Resonance frequencies are 
27.29638 days and 74.63 years (Williams et al., 2001). The rigid 
or deformed forcing terms at 27.212 days (F) and 6 years (F-g) 
cause significant responses in the pole direction, but the 
1/2 month response is weak. The first three terms on the right- 
hand side of (13) are important for the pole. The derivative of I 
plays a major role for the F term. The Sun increases the F term 
magnitude by 0.3%. 

For the linear part of the rotational dissipation solution, six 
elements Uij are considered for each of the constant plus 52 
periodicities of the Earth-induced torque/tide functions. These 
include the largest functions plus smaller periodicities selected to 
give longer periods or near resonant terms. To these are added 
the Sun-induced functions for the constant and 13 periodicities 
plus the larger spin terms. The appropriate combination of 
elements for the right-hand side of (13) and the moment rate on 
the left-hand side are computed for 52 (constant times periodic) 
plus 2x522 (periodic times periodic, giving sum and difference 
frequencies) combinations. Rotational coefficients are retained 
above a threshold size. 

In addition to the first-order solution, selected nonlinear 
corrections from the rigid-body torques are added as second- and 
third-order corrections. This has the effect of increasing the 'r 
constant by 3% and increasing the magnitude of the F 
coefficients for the pole by 2%. The pole response at 6 years is 
made larger. 

5. Tidal and Rotational Dissipation' 
Series Solution 

This section presents and discusses the lunar physical libration 
series solution for tidal and spin dissipation. Comparisons are 
made with the previous computations of Yoder [1979] and 
Eckhardt [ 1981 ]. 
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27,938 WILLIAMS ET AL.' LUNAR DISSIPATION IN MANTLE AND CORE 

Table 1. Longitude Libration Tidal and Spin Dissipation Terms are Given as a Function of Deformation Q Parameters a 

Argument Period, Coefficients for Deformation Q Parameters 

days 

2D+œ 2F F+œ 2œ 2D œ+œ' 2F-œ F œ 2œ-F 3œ-2F D œ-œ' 2D-œ 2œ-2D œ' 
9.6 13.6 13.7 13.8 14.8 25.6 26.9 27.2 27.6 27.9 28.3 29.5 29.8 31.8 206 365 

œ-D 2F-2œ F-œ 

412 1095 2190 

0 oo 0.5 -0.3 

œ 27.55 

2D-œ 31.81 

2œ-2D 205.89 

œ' 365.26 

œ-D 411.78 

2F-2œ 1095.18 -0.5 

F-œ-79 ø 2190.35 

1.9 5.5 7.6 8.4 305.4 10.8 -0.2 
-1.1 

-0.3 

-0.3 -0.3 -2.2 -2.3 0.9 
0.4 -0.4 8.5 

0.3 0.3 -0.3 

-0.5 -14.9 -5.9 -14.8 -5.3 -0.3 17.9 

aEach libration term is the product of a cosine of the argument at the left, with its period in days, times the sum of the coefficients (in arcseconds) to the 
right. Each coefficient is multiplied by the Love number k 2 and divided by the Q for the deformation period (days) and deformation argument at the top. 

The arguments of the series solution depend on polynomial 
expressions for four angles. The polynomials are denoted g for 
lunar mean anomaly (period 27.555 days), g' for the mean 
anomaly of the Earth-Moon center of mass about the Sun 
(1 year), F for argument of latitude (27.212 days), and D for 
mean elongation of the Moon from the Sun (29.531 days). Also 
useful is the polynomial for the lunar orbit node f2 measured 
from the precessing equinox. It is also convenient to use L and L' 
for the polynomial expressions for the mean longitudes of the 
Moon and Sun, respectively, both measured from the precessing 
equinox, where L = F + f2 and D = L- L'. 

By subtracting the uniform rotation and precession motion 
from the Euler angles, there results a set of small libration 
parameters q:, p, and (5. For the ecliptic definition of Euler angles 
(section 2) the conversions between Euler angles and the libration 
parameters are • = f2 + (5, 0 = I + p, and (p = F + 180 ø + q: - (5. 
Equations (18a) and (18b) provide the connection to Pl and P2' 
The angle I (not to be confused with the moment of inertia) is the 
1.54 ø mean tilt of the precessing equator to the ecliptic plane. 
The product 1(5 is convenient because it is comparable in size to p 
and 

The analytical dissipation series for the longitude libration ('[) 
is tabulated in Table 1, and the latitude librations (pl and P2) are 
in Table 2. Coefficients down to 0.2 are presented (a borderline 

188 day term was not included in Table 2). In Table 1 the 6 year 
term with phase is orthogonal to the rigid-body term owing to 
third-degree harmonics. The amplitude of each periodic term in 
the rotation depends on one or more of the Q parameters for the 
deformation frequencies. For example, in arcseconds the 
monthly p• term in Table 2 is 

k, (217.4 8.0 4.7 1.8 0.7 ) + ¾ + 0-75 + + +'" 
The coefficient is dominated by the Q for the 27.212 day month 
(north-south motion), but the Q for deformation at the 27.555 day 
anomalistic month and the Q at 1/2 month contribute a few 

percent. Most of the p• and P2 coefficients for argument F are 
equivalent to a constant, negative shift of the equator's precessing 
node. The constant 1(5 shift is given in arcseconds by 

/(sconst k• ( 216.4 0.2 4.7 =" - QF + Qt - QF+t 
1.8 0.7 

- Q2F - QF-• + '" ) ' (21) 
Compared to the monthly p• and P2 coefficients, the Qe 
dependence has virtually disappeared, and the sensitivity to the 
three principal frequencies of latitude forcing remains. In 

Table 2. Latitude Libration Tidal and Spin Dissipation Terms a 

Argument Period, Libration Function 

2F F+( 

days 13.6 13.7 

Coefficient for Each Deformation Q 

2D F • 2D-t F-t 

14.8 27.2 27.6 31.8 2190 

F 27.212 Pl cos 1.8 4.7 
F 27.212 P2 sin -1.8 -4.7 
F-t 2190.350 Pl cos -0.2 
F-œ 2190.350 P2 sin 0.3 

2F 13.606 1(5 cos 

2F 13.606 p sin 
2F-t 26.877 1(5 cos 

2F-œ 26.877 p sin 
• 27.555 1(5 cos 

• 27.555 p sin 
0 oo 1(5 1 -1.8 -4.7 

0.3 

-0.3 

217.4 8.0 0.3 0.7 

-216.0 -8.0 -0.3 -0.7 

-6.9 -5.8 -1.9 

8.3 7.5 2.6 

-1.1 

1.1 

0.3 -0.8 -0.3 

-0.3 0.8 0.3 

3.7 6.5 2.3 

-3.6 -6.5 -2.3 

-216.4 -0.7 

aLatitude libration parameters are p• and P2 and, equivalently, p and 1•. Each libration term is the specified trigonometric 
function of the argument at the left (with its period) times the sum of the coefficients to the right. Each coefficient is multiplied 
by the Love number k 2 and divided by the Q for the deformation period (in days) and associated argument at the top. 
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WILLIAMS ET AL.' LUNAR DISSIPATION IN MANTLE AND CORE 27,939 

addition to the P l and P2 parameters in Table 2, an approximate 
conversion to p and Ic• is given. The latter pair is less complete 
since it omits some smaller combinations including differently 
phased mixes with F arid fl. 

The physical libration Pl is approximately the tilt of the lunar 
pole away from the Earth, and the monthly term is the largest 
observable dissipation periodicity. (The constant in longitude 
libration is not directly measurable since a change is 
compensated by a shift of reflector longitude coordinates during a 
solution.) The 27.212 day periodicity is the dissipation signature 
that has been seen by LLR for 2 decades. With Q proportional to 
1/frequency and the DE403 value of k2/Q = 0.030/25.9 = 
1.16x10 -3, the coefficient of the Pl term is 0.276". Since the 
coefficient in (20) is dominated by the monthly Q F, the Q 
determined by the DE403 fit of LLR data to a time-delay tidal 
dissipation model effectively corresponds to a monthly period of 
27.212 days. A different dependence of Q on frequency will 
change the Q inferred from observations by only a few percent. 
The Ic• shift is-0.265" and the node shift is-9.8" 

For the DE403 value of k2/Q a unit value in Tables 1 and 2 
corresponds to a rotational displacement of 9.7 mm at the lunar 
radius. It is interesting to compare the tidal sensitivities for 
periodic rotation terms in the tables with tide heights. For the 
largest tides of-0.1 m, with arguments • and F, the Q• and QF 
are well represented among major rotation terms. Of the tides 
from 1 cm to several centimeters, namely, 2D-g, 2D, 2g, F+g, the 
latter is most important in the rotation. Of the many tides from 
1 mm to several millimeters, the rotation is sensitive to Q 
parameters for F-e, •' 2•-2D. The 2F-2• tide is only -0.1 mm 
but is selected by the near resonant period. The phase-shifted 
part of the tide height is proportional to 1/Q. So the larger 
sensitivities in Tables 1 and 2 correspond to phase-shifted tidal 
displacements of a few millimeters down to a few micrometers. 
For selected tidal frequencies the influence on the rotation 
exceeds the tide height in size. 

The dissipation terms have been evaluated for two 
dependences of Q on frequency using the expressions in Tables 1 
and 2 augmented with smaller coefficients. Table 3 evaluates the 
coefficients for Q independent of frequency, and Table 4 uses Q 

ß 

proportional to F/frequency. The latter corresponds to the time 
delay tidal model used for the numerical integration of the 
rotation. For the 6 year longitude term, only the cosine 
component is shown, but most of that term is in the sine 
component (see Table 1). Most noteworthy are the monthly and 
6 year terms for (Pl and P2) latitude librations and the 3 year, 
1 year, and 206 day terms for longitude libration. The most 
interesting terms for testing frequency dependence of Q are the 
3 year and annual terms in longitude libration. Table 1 shows 
that the annual term is sensitive to the annual tidal Q, while the 
3 year term is most sensitive to monthly Q and 3 year tidal Q. 
The series of Tables 1-4 scale inversely with C/mR 2, here taken 
as 0.3932 with an uncertainty of 0.0002 [Konopliv et al., 1998]. 

Table 3 can be compared with Eckhardt's [1981] 
computations, and Table 4 can be compared with Yoder[1979]. 
For the constant in longitude, Eckhardt (multiply his tabulated 
differences by-2000) gave 342, and Yoder gave 350.4. 
Eckhardt's values should be -1/2% larger owing to his smaller 
value of C/mR 2, so the constant term here is slightly less than the 
two published calculations. For the 3 year longitude term, 
Eckhardt has -24, in good agreement with Table 3. Yoder's 
value for this near-resonant term is off by an order of magnitude. 
For the 206 day term, Yoder has the right magnitude (5.0), but 
the reversed sign, while for the difference between the annual 
terms of Tables 3 and 4 he gives 8.4. Eckhardt does not give 
terms smaller than 10. For the large term in latitude libration, 
Eckhardt gives 210 and -208 for the monthly P l and p2 
coefficients, respectively, and-208 for the I•J constant. 
Compared with Table 3, his monthly magnitudes are 10% smaller 
and the lc• magnitude is 7% smaller. The magnitude of the Ic• 
constant should be less (qJconst sin I = 9) than the average of the 
two monthly magnitudes, so there is a 4% internal inconsistency 
in Eckhardt. Yoder defines his latitude results as though a 
rotation of the p and l•J variables, and the 229.6 value for the 
latter parameter (there is a sign ambiguity due to an apparently 
misplaced n in his definitions) is a good match with Table 4. The 
second term in latitude librations is elliptical in p l and P2 and 
splits into g and 2F-g terms in l•J and p. Eckhardt gives -14 for 
P l and 20 for P2, in reasonable agreement with Table 3, while 

Table 3. Evaluation of the Coefficients of the Physical Libration Theory for Tidal 
Dissipation Using Q Independent of Frequency a 

Argument Period, 'c Pl P. 2 Io p 
cos, cos, sin, cos, sin, 

days .......... 

0 oo 339.95 

F 27.21 

F-• 2190.35 -0.14 

œ 27.56 -1.12 
2•-2D 205.89 -4.14 

• 365.26 8.20 

2œ-F 27.91 
2F-2œ 1095.18 -24.30 

œ-D 411.78 0.36 

F+œ-2D 188.20 
2D-œ 31.81 -0.39 
2D-F 32.28 

2F-2D 173.31 0.19 

F+f•-81 ø 27.32 

81ø-f• 6798.38 

2F-œ 26.88 

2F 13.61 
2œ 13.78 -0.03 

233.73 -232.41 

-15.02 18.96 

-0.01 0.03 

-0.34 0.46 

-0.16 0.22 

-0.18 0.18 

-223.88 

12.81 

-0.11 

0.22 

-0.61 

0.01 

0.39 

0.19 

0.18 

-0.94 

-1.19 

0.30 

-12.75 

-0.02 

-0.40 

-0.19 

-0.18 

0.92 

1.13 

-0.15 

aEach coefficient (units arcseconds) should be multiplied by k2/Q. 
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27,940 WILLIAMS ET AL.: LUNAR DISSIPATION IN MANTLE AND CORE 

Table 4. Evaluation of the Coefficients of the Physical Libration Theory for Tidal 
Dissipation Using Q = QF •v / Frequencya 

Argument Period, •: P 1 P. 2 Io p 
cos, cos, sin, cos, sin, 

days .......... 

0 oo 349.30 

F 27.21 

F-/• 2190.35 

P. 27.56 -1.13 

2P.-2D 205.89 -5.03 
g 365.26 0.34 

2g-F 27.91 

2F-2g 1095.18 -43.31 

œ-D 411.78 0.64 

F+œ-2D 188.20 

2D-•t 31.81 -0.38 
2D-F 32.28 

2F-2D 173.31 0.10 

F+f•-81 ø 27.32 

81 ø-f• 6798.38 

2F-•e 26.88 
2F 13.61 

2P. 13.78 -0.06 

240.30 -238.98 

-13.39 16.86 

-0.21 0.23 

-0.31 0.44 

-0.18 0.26 

-0.18 0.18 

-230.20 

10.83 

-0.14 

0.01 

-0.93 

0.02 

0.36 

0.22 

0.18 

-0.68 

-1.19 

0.26 

-10.76 

-0.22 

-0.37 

-0.22 

-0.18 

0.66 

1.14 

-0.12 

aEach coefficient should be multiplied by k2/Q F. Units are arcseconds. 

Yoder gives 12.5 by 15.2, which is similar to Table 4's entries. 
The numerical results of Bois and Journet [1993] are much 
smaller than the analytical results and are in error. 

The most important dissipation terms are at monthly, 206 day, 
annual, 3 year, and 6 year periods. The series of this section will 
be used for interpretation of LLR data fits (section 18). 

6. Average Values and Definitions 

Section 3 pointed out that the tidal deformation of (7) and the 
spin deformation of (9) have constant parts. With deformations, 
the "rigid-body" moments of inertia of (5) are not the time- 
averaged moments. Since the second-degree harmonics J2 and 
C22 depend on the moments, careful definitions must be given. 
The rigid-body moments A, B, and C are used to define 
ct=(C-B)/A, [•=(C-A)/B, and T=(B-A)/C. J2 is taken as an 
independent parameter, while C22 and C/mR 2 are derived 
parameters: 

J2 rigid • (1 + •) 
C22rigid- 2(2•-¾+•¾) (22) 

C 4 C22 rigid (23) 
mR 2 - 

The constant part of the functions (a/r) 3 U i Uj and 03 i 03j / n 2 are 
used to compute the averages. For accurate time-averaged values 
of the moments normalized by mR 2 and the second-degree 
harmonics, add the corrections from the appropriate columns of 
Table 5 to the rigid-body values. There are very small tidal 
contributions to the off-diagonal moments, and two second- 
degree harmonics because two of the principal axes are not quite 
aligned with the mean Earth and mean spin directions. The 
principal axes of the rigid body and average deformed body do 
not quite match. 

In the JPL LLR software, [•, ¾, k 2, and J2 are the independent 
parameters, while C22 and C/mR 2 are derived. In the numerical 

integrator the mean spin values have been virtually nulled out of 

/spin' which forces the mean spin effects into the "rigid-body" 
quantities. Only the average tidal contributions from the Earth 
(no Sun) should be added to rigid-body quantities to get averages. 
Thus the LLR-derived values of [• and ¾ reported in this and past 
JPL papers depend on the rigid-body part without mean tides. 
Ferrari et al. [1980] gave expressions to link values of J2 and 
C22 which include average Earth-raised tides with k 2 and rigid 
values of [•, ¾, and C/mR 2. Those expressions were used to report 
numerical values there and by Dickey et al. [1994]. The original 
rationale was that spacecraft-derived harmonics were generated 
without a tidal or spin deformation model, while LLR analyses 
did use a tidal model and a nulled average spin deformation. 
Tidal models are now used to analyze spacecraft data [Lemoine et 
al., 1997; A. S. Konopliv, private communication, 1996] as well 
as LLR data. Table 5 can be used to recover average values for a 
variety of definitions. 

A fluid or strengthless Moon would relax to the shape of the 
tidal plus synchronously rotating spin potential. To calculate the 
equilibrium moment differences or second-degree gravitational 
harmonics for the Moon, the fluid Love number kf = 1.44 is 
appropriate rather than the smaller quantity from elastic theory. 
Such a calculation shows that J2 is 22 times larger, [• is 17 times 
larger, and ¾ and C22 are 8 times larger than the equilibrium 
figure for the present distance. The Moon is strong enough to 
support the stress elastically. It is appealing to conjecture that the 
tidal plus spin figure was frozen into an earlier Moon closer to 
the Earth [Jeffreys, 1915, 1937; Kopal, 1969; Larnbeck and 
Pullan, 1980]. The spread of factors from 8 to 22, corresponding 
to distances of 0.50 to 0.36 times the present Moon, does not 
make it easy to embrace the hypothesis. Lambeck and Pullan 
invoke noise in the gravity field, the spectrum of power in the 
higher-degree field extrapolated to second degree, to explain the 
spread. Here the spectrum of Konopliv et al. [1998] is adopted 
for the extrapolation, and a linear combination, which would be 
zero for an equilibrium figure, is formed. The linear combination 
of harmonics is J2 - 10 C22 / 3 = ( 1.3+ 1.1 )x 10 -4, or the equivalent 
expression [• - 4 ¾ / 3 = (3.3+2.7)xl 0 -4, and the departure from 
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WILLIAMS ET AL.: LUNAR DISSIPATION IN MANTLE AND CORE 27,941 

Table 5. Mean Values of Deformations for Moments and Harmonics a 

Parameter Rigid Tide by Earth Tide by Sun Oblate Spin Spherical Spin 

Ill/mR2 A/mR 2 -4.935x10 -6 -7x10 -9 -0.843x10 -6 2.529x10 -6 
122/mR 2 B/mR 2 2.469x10 -6 -7x10 -9 -0.843x10 -6 2.529x10 -6 
133/mR 2 C/mR 2 2.466x 10 -6 1.4x 10 -8 1.686x 10 -6 2.529x 10 -6 
ll2/mR 2 0 2.3x10 -9 0 0 0 
I• 3/mR2 0 -2.8x 10 -9 0 0 0 
/23/mR 2 0 0 0 0 0 
J2 J2 rigid 3.698X10 -6 2.1X10 -8 2.529X10 -6 0 
C2! 0 2.8x10 -9 0 0 0 
S2• 0 0 0 0 0 
022 022 rigid 1'851X10-6 0 0 0 
S22 0 - 1.2x 10 -9 0 0 0 

aThe tidal and spin deformations of the moments of inertia and the second-degree 
harmonics have mean values (columns 3-6). The symbol (or zero value) for the rigid-body 
quantity is given in the second column. The numerical values in columns 3-5 should be 
multiplied by the Love number k 2. The last column should be multiplied by s. 

equilibrium is comparable to the extrapolated power. The frozen 
figure hypothesis is viable. 

7. Frequency Shifts and Damping 
From Deformation 

The forced lunar physical librations have three resonances: one 
in longitude libration and two for pole direction. The resonance 
periods are the same as the periods of the three free libration 
modes. The free librations are analogous to the solutions of the 
reduced equations for linear differential equations, and the 
unpredictable amplitude and phase must be established by 
observation. See Williams et al. (2001) for a study of free 
librations. Elastic deformation will shift the resonance periods 
from the rigid-body values, and dissipation will damp the free 
librations in addition to causing the forced terms of sections 4 
and 5. 

Elastic deformation without dissipation does not contribute 
forced terms from the right-hand side of (13). It does influence 
the rotation through the derivative of I in the Ico term. The 
largest modification comes from the i-1, j=3 tidal term in (7). 
The u 3 component is a function of Pl, and its derivative is 
introduced into the differential equations. The square of the 
monthly resonance frequency for pole direction 
(precession/nutation mode) in the rotating frame is modified to 

2=n 211_ •2 sin2 I+3(S lct+S 2[•')+k 2•cosl] (24) ¾p '•- , 

where S2=0.9778, Sl=0.0018, and [•'=629.978x10 -6 is a 
modification of [• to include effects of third-degree harmonics 
(see Williams et al., 2001). The tidal part depends on the 
combination 

mR2 M ( aR__)3 - = 1.91 x 10 -5 . (25) •- C m 

For the DE403 k 2 value, the tidal part shortens the monthly 
resonance period by 8x10 -6 day. The equivalent 81 year period 
in the nonrotating frame is shortened by 9 days, and the 24 year 
period in the 18.6 year precessing frame is lengthened by 0.8 day. 
Other elastic effects on the three resonance frequencies multiply 
ct, [•, or ¾ and so are less important than the contribution in (24). 

While elasticity causes a dramatic increase in the wobble period 
for the Earth, this, as Peale [ 1973] realized, is not the case for the 
Moon. 

The free libration in longitude has a 1056 day period 
(Williams et al., 2001). A variation of 'r causes an east-west 
motion of the tidal bulge, and a delayed response in the bulge 
causes damping from the tidal torque term. A linear term for 'r 
comes through u 2 in (14) and this is the source of most of the 
damping in (17). For damping like exp(-Dt) the damping time is 
1/D. The damping for the longitude mode is 

• 3 k2 D/_? 0.497 -•- n • Q/_,, (26a) 

k 2 
D L - 0.091 •LL Yr-l' (26b) 

The QL is at the 1056 day period, and ¾ ', with value 228.6x 10 -6, 
is a modification of ¾ for third-degree harmonics (Williams et al., 
2001). The expression (26a) is similar to that given by Eckhardt 
[1993], and (26b) is 4% different from the numerical expression 
of Peale [ 1976]. 

The motion of the pole direction moves the tidal bulge in a 
north-south direction. The tidal torque term (first on right-hand 
side of (13)) is the main influence on damping the 27.296 day 
monthly mode. Terms from the derivative of the moment and the 
spin acting on the tidal bulge (third term) cancel. The spin on 
spin and torque on spin bulge terms are ineffective because the 
spin axis stays near the principal axis for the monthly mode. The 
damping is given by 

k 2 

Dp = 1.47 • n Qp, (27a) 
k 2 

Dp = 2.35x10 -3 •pp yr -1. (27b) 

The Q is at 1 month (27.296 days). The agreement with Peale's 
numerical value is excellent. For the DE403 value of k2/Q the 
damping time is 3.67xl 05 years. 

For the wobble mode the spin axis is displaced from the 
principal axis. The bulges from tides and spin are both effective 
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27,942 WILLIAMS ET AL.: LUNAR DISSIPATION IN MANTLE AND CORE 

in damping the 74.6 year wobble. The expression for the 
damping of the elliptical wobble depends on the ratio E (=2.474) 
of the axis of the ellipse, where E 2 = ( 

Dw ( 2.62 k2 = • + 0.168 E) • n Qw' (28a) 
k 2 

D w = 1.47 • n Qw' (28b) 

D w = 2.36x 10 -3 k2 -•w yr-l' (28c) 

The wobble Q is at 74.6 years. The numerical expression is 17% 
different from Peale's. The similarity of numerical coefficients 
for the damping of the two pole modes is coincidence. 

Fits of the LLR data will be used to estimate Q as a function of 
frequency (section 18). Damping times will then be calculated 
(section 20). 

8. Orbit Perturbations From Tidal Dissipation 

The tidal and spin deformations not only affect the lunar 
rotation but also perturb the orbit. There are both elastic and 
dissipation effects, but only the latter are considered in this 
section. Dissipation causes the exchange of energy and angular 
momentum between the rotation and orbit. This section first 

presents the potentials for deformations and then gives numerical 
and analytical expressions for secular orbit changes. 

An external body raises tides on the Moon, and those tides 
generate forces on the tide-raising and any other external bodies. 
The tidal distortion from a tide-raising body (denoted by *) has a 
potential energy at an external body of 

R 5 

Vtide =k 2 G MM* r3 r, 3 P2(u'u*). (29) 

The potential energy at the external body from second-degree 
spin distortion is 

R 5 
Vspin---k 2 M to '2 -- P2(u'•)*). (30) 3 r 3 

P2 is the second Legendre polynomial, and •o is the unit spin 
vector. The remaining notation is as before. For dissipation the 
phase-shifted or time-delayed variables (except M) indicated with 
an asterisk are displaced as seen from the frame of the rotating 
body. To calculate forces, the positive gradients of (29) and (30) 
are taken with respect to the position coordinates without an 
asterisk (sign convention for the point mass potential is plus). 
Along the Earth-Moon line the acceleration is inward toward the 
Moon. 

A rotating frame is natural for computing time-delayed lunar 
deformation. Both the orbit motion and rotation are time 

delayed. For orbit computations it can be convenient to expand 
the vector and scalar radius through first order in the time delay 
At using a space-fixed frame 

r* -- r-( i'- toxr ) At, (31a) 

r* • r-/' At. (3lb) 

The expression in parentheses is the conversion from space- to 
body-referenced velocity. 

As seen from the rotating Moon, the Earth's angular and 
distance variations cause tides. Here secular orbit changes from 

energy and angular momentum exchange are considered. The 
orbit is perturbed in two ways by the deformations' directly from 
the forces calculated from the gradients of (29) and (30) and from 
forces due to the rigid figure of the Moon through the rotational 
displacements of its principal axes. To compute the power going 
into the orbit, calculate i'.V V, where V is the sum of the rigid 
figure, tide, and spin potentials. With manipulation the equation 
for power is derived. 

dV d(Ito) 
i-. VV = -•- - to .-•--. (32) 

Since the Euler equation (1) permits the derivative of the angular 
momentum to be replaced with the torque, this equation may 
seem self-evident, but the right-hand side is evaluated in the 
frame rotating with the Moon, which is computationally 
convenient, and the left-hand side is in the nonrotating frame, as 
needed for orbit perturbations. For the time derivative of V one 
differentiates the u and r variables but not the parameters with an 
asterisk. Simplifications can be made. Owing to the 
synchronous rotation, the power flowing into the rotation rate is 
only C/ma 2 -- 10 -5 of the dissipated power, so the spin potential 
and the second term on the right-hand side can be ignored. The 

trigonometric series for Uij = u i uj (a/r) 3 were developed for the 
computations of section 4, and these series appear in the rigid 
figure and tide potentials. The rigid figure potential is linear in 
the U i. and its time derivative gives periodic terms, but the tidal •J.' . 
potential contains products Uij U i j, and its derivative contains 
periodic and secular terms. For Earth-raised tides acting back on 
the Earth the average power, Pave' depends on the tidal potential 
through the constant part of 

k 2 G M 2 , Pave= 2a (-ff-)5(3•bijUij- Z /-]ii Z U•jj )' (33) 
ij i j 

This power is drawn from the lunar orbit and dissipated in the 
Moon. The average power depends on squared tidal amplitudes 
times the frequency. Note that • Uii = (a/r) 3 The average 
power from solar tides is three orders of magnitude smaller than 
the power from Earth-raised tides. 

The power is related to the semimajor axis change through the 
derivative of the total energy -GMm/2a. The secular semimajor 
axis and mean motion changes ( 3 Ad/a =-2 Ati/n ) are given in 
Table 6. The dependence on each tidal Q is explicit. In 
calculating the table, power is converted to semimajor axis 
change using a mean semimajor axis, rather than an osculating 
one. To convert/xti in mm yr -l to average power in ergs yr -•, 
multiply by 0.99x 10 24. 

For dissipative effects the torques on the lunar rotation and 
orbit, due to displaced second-degree figure and deformation, are 
equal in magnitude and opposite in sign (there are ignored figure- 
figure effects which are effectively fourth degree). About the 
polar axis the constant part of the torque due to tides is balanced 
against the constant part due to the rigid figure being displaced 
by tides. The average torque about the polar axis is zero. The 
tide-caused displacement of the pole direction is a dynamical 
rather than static response, and the sum of torques about the body 
y axis is not zero. This time-varying torque has a constant 
component projected along the line of the equator/ecliptic 
intersection. This component causes the Moon's equator to 
precess, but the dissipation-induced shift in the direction of the 
constant torque by o from the orbit node on the ecliptic (section 
5) causes secular orbit perturbations. Since the torque vector 
does not quite lie in the orbit plane, the orbital angular 
momentum is perturbed, and since it is not quite aligned with the 
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WILLIAMS ET AL.' LUNAR DISSIPATION IN MANTLE AND CORE 27,943 

Table 6. Secular Orbit Changes From Periodic Tides a 

di 

Argument Period, Ah, Ah, Ap, Ak, A•, A/•, A•, 
days "cent -2 mm yr -1 mm yr -1 10 -• yr -I •as yr -I "cent -2 "cent -2 

œ 27.555 205 -302 -4 -705 15 -1.71 2.36 

F 27.212 136 -201 -201 2 -601 -0.89 0.34 
2D-• e 31.812 6 -10 0 -22 0 -0.06 0.08 

2D 14.765 10 -14 0 -33 0 -0.08 0.11 
2œ 13.777 7 -10 0 -23 0 -0.05 0.08 
F+• 13.691 6 -9 -4 -10 -13 -0.04 0.04 
2F 13.606 1 -2 -2 0 -5 -0.01 0 

F-œ 2190.350 0 0 - 1 2 -2 0 0 
2D+• e 9.614 1 -1 0 -3 0 -0.01 0.01 

Sum for constant Q 373 -550 -212 -795 -606 -2.86 3.02 
Sum for Q-l/frequency 394 -580 -218 -854 -623 -3.02 3.22 

aTidal argument and period are at left. The remaining columns are to be multiplied by k2/Q, with Q appropriate to the 
tidal frequency. The last two lines give the sum of terms for Q constant and Q proportional to inverse frequency (multiply 
last line by k2/Qr). 

node, the inclination is perturbed. The angular momentum 
component normal to the ecliptic plane is preserved. 

For angular momentum exchange between rotation and orbit 
the torque rxVV is required. In section 4 the tidal torques were 
developed for physical libration calculations but must be rotated 
from body-referenced coordinates into the orbit frame. For the 
computations of Table 6 the total orbital angular momentum is 
proportional to the square root of the semilatus rectum p=a(1-e2), 
and the torque normal to the orbit plane gives the change in p. 
The eccentricity rate comes from the change in p and a. The 
torque component in the orbit plane directed 90 ø from the node 
gives the secular orbit inclination rate. 

There are indirect effects of the above a, e, and i rates which 

cause the perigee and node precession rates to change. The solar- 
induced precession rates depend strongly on the mean motion and 
more weakly on eccentricity and inclination. Like the mean 
longitude, the node and perigee angles experience tidal 
accelerations. The partial derivatives of the longitude of perigee 
(•) and node (f2) precession rates [Chapront-Touzd and 
Chapront, 1988], with the tabulated tidal rates for a, e, and i, give 
the accelerations '• and • in Table 6. 

The model for the DE403 integration is based on tidal 
dissipation, but no core. The DE403 solution effectively sets a 
limit to the tidal contribution' Ar• = 0.46 "cent -2 and 

Aft = -0.67 mm yr -1. Additional rates are Ap = -0.25 mm yr -l, 
Ag = -0.99x10 -li yr -l, and Adi/dt- -0.72 •as yr -1. The 
accelerations are A/• = -0.0035 and A• = 0.0037" cent -2. The 
inclination rate and the last two accelerations are too small to 

detect with the present data set. The secular acceleration Ah is 
positive. Tides on the Earth cause a negative secular acceleration 
of-26" cent -2. Tidal dissipation in the Moon contributes <2% 
of the total tidal secular acceleration. The above eccentricity rate 
is 70% of that from the Earth. The product aAk =-3.8 mm yr -l. 
With the above Ad, lunar tides cause the perigee to increase 
3.2 mm yr -I and the apogee to decrease 4.5 mm yr -l. These 
changes, along with the secular acceleration, are large enough to 
detect with the Lunar Laser data analysis, but other masking 
influences on these rates must be considered (see section 16). 

Analytical approximations for the orbit changes are useful, 
e.g., for evolutionary calculations. For the effects due to the 
displaced figure axes the dissipation-induced constant •: and 
terms are needed. Analytical approximations are 

k2 M mR2 (_•)3 [ 6e2 + 

A'C=Q m C sin(i+/) sin I ] , (34a) 

k 2 M tnR 2 (_•_)3 sin(i+/)sin/ AIO=-Q rn C [3 sini (34b) 

The Q is for a 1 month tidal period. 
The analytical approximations correspond to the •? and F tides 

in Table 6. The leading terms in the U0. series are 
U•l--l+3ecosg , Ul2--2esing, and Ul3--sin(i+/)sinF. 
These may be used with the power equation (33) and converted 
to the secular acceleration in orbital mean longitude •h: 

9 k2 M (_•__)5 n 2 [7 e 2 + sin2(i+/) ]. (35) Ah=2 Qm 
The orbit eccentricity is e (0.0549), the semimajor axis is a 
(384,399 km), and the mean motion is n (13.3685 rev yr-•). The 
inclinations of the orbit and equator planes to the ecliptic plane 
are i = 5.145 ø and I = 1.543 ø, respectively. The numerical 
evaluation 348 k2/Q" cent -2 may be compared with Table 6. The 
semimajor axis perturbation follows from Aft =-2 a Ah/3 n. The 
numerical evaluation is •fi =-515 k2/Q mm yF 1. 

Analytical approximations for eccentricity and inclination 
rates follow from angular momentum transfer as before: 

•b: 21 k2 M -• -- -- ne (36) 
2Qm ' 

di 3 k2 M (_•__)5 sin2(i+/) = -- • -- n (37) 
dt 2 QF rn sin i 

The Q is for a month. The numerical evaluations are 

Ak = -7.4x10 -9 k2/Q yr -• and di/dt = -6.0x10 -4 k2/Q F" yr -•. 
Lunar tidal dissipation extracts energy from the orbit and 

deposits it in the Moon. Angular momentum from the orbit keeps 
the lunar pole direction offset but does not change the spin rate 
(apart from the small secular acceleration Ah). This is quite 
different from the Earth, where the spin energy and angular 
momentum power the orbit changes. (Zonal tides on the Earth do 
extract their energy from the orbit rather than the spin, but they 
affect tidal h by only - 1%.) 
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27,944 WILLIAMS ET AL.: LUNAR DISSIPATION IN MANTLE AND CORE 

How does the Mooifs spin rate follow the slowly increasing 
orbit period from dissipation on Earth and Moon? The rigid- 
body axis displaces slightly east of the mean Earth direction, so 
torques decrease the lunar spin. This is a rigid-body dynamical 
balance of deceleration against torque. The expression comes 
from solving the equivalent of (17) with a quadratic time term in 
the polynomial for mean longitude L: 

:• + h + 3 ¾ n 2 'c = 0. (38) 

Assuming fourth and higher derivatives of L are zero, the 
displacement in q: is 

h 
A'c = --- (39) 

3¾n 2 ß 

To follow the tidal deceleration of-26 "cent -2 requires a 
displacement of only 0.0006". The quadratic (t 2) term in L 
depends on the changing eccentricity of the Earth-Moon orbit 
around the Sun as well as the tidal acceleration. The total 
acceleration is -13 "cent -2 [Simon et al., 1994], and it requires 
only 0.0003" shift of the axis for the lunar spin to follow the orbit 
change. The longitude libration follows slow orbital longitude 
accelerations as assumed in analytical theories and experienced in 
numerical integrations [Bois et al., 1996]. 

The lunar tidal forces which give rise to the above secular 
orbit effects are part of the JPL numerical integration program for 
orbits and rotation. The numerical orbit integration does not use 
this section's approximations. The time-varying moments of 
inertia are converted to the five second-degree gravitational 
harmonics, and the orbit perturbations are computed from the 
harmonics. This is convenient because perturbations from the 
large rigid-body parts of the lunar J2 and C22 must also be 
calculated. The detectability of these orbit effects will be 
considered further in section 16. 

9. Computational Model for Core Dissipation 

If a liquid lunar core exists, then dissipation at the core-mantle 
boundary is expected when the fluid moves at a different rate 
than the overlying mantle. This section presents the core model 
used in the numerical orbit and rotation integrations and 
theoretical computations. 

Though motions in the fluid may be complex, we adopt a 
simplified model based on the average fluid rotation m'. The 
differential angular velocity between the core and mantle is 
Ato = to'-to. At a point on the surface of a spherical core-mantle 
boundary (radius R') the relative velocity of the fluid is AtoxR', 
and a viscous force proportional to the relative velocity gives a 
torque proportional to R'x(AtoxR')= R '2 Am- (R'.Ato) R'. When 
integrated over the spherical surface, the total torque is 
proportional to Am. 

A core dissipation model is implemented in the LLR analysis 
software. The equations of sections 2 and 3 are now interpreted 
as applying to the mantle. To the large gravitational torques 
acting on the mantle in T on the fight-hand side of (1) is added 
the small additional torque T c 

T c = K ( •o'-•o ), (40) 

where K is a dissipation parameter which couples mantle and 
core. The ratio of K to the mantle moment C is a parameter to be 
fit to data. The core-mantle boundary is taken as spherical, so the 
only torque on the core is -Tc. The Euler equation governing the 
overall rotation of the core is then 

d(r½o') 
d-•• + •o'xi'•o' = -Tc. (41 ) 

For a spherically symmetric core, the core moment matrix I' has 
equal diagonal elements C' (tidal distortions are ignored), and the 
above cross product is zero. 

do)' K 

dt= C' ( to- to'). (42) 

The moment ratio C7C is an input parameter. For the Euler 
equations the torque on the core is in the core's rotating frame, 
while the opposite core torque on the mantle is expressed in the 
mantle's rotating frame. 

If the (laminar) viscous force is replaced with a turbulent force 
proportional to the square of the relative velocity, then the total 
torque integrated over the sphere is proportional to IX,,,I •x,,, and 
the counterpart to (40) would require an additional factor of IXol. 
Yoder [1981] concludes that a lunar core-mantle interaction 
would be turbulent. There is further discussion in section 11. 

The core-mantle coupling is weak, and m' shows less variation 
than •o. The magnitude of the difference •o'-to is nearly 
constant, and the direction is mostly uniform precession (the 
mantle rate varies <10 -4 n, and the direction varies <10 -3 radians 
from uniform precession). The difference between turbulent and 
viscous interactions is subtle, and (40) is used in this paper for 
data analysis. 

The equations of rotation for the mantle and core are 
numerically integrated along with the equations of motion for the 
orbits of the Moon and planets. The initial time is 1969. Partial 
derivatives of the lunar Euler angles and orbit with respect to 
K/C, the two initial angular velocity vectors, two sets of initial 
Euler angles, two mantle moment differences (C-A)/B and 
(B-A)/C, gravitational harmonics, k 2, and lunar tidal dissipation 
are also integrated so that solutions can be made. 

10. Precession of Core 

The equator of the observed solid Moon is tilted 1.54 ø to the 
ecliptic plane, and its retrograde precession is locked to the 18.6 
year precession of the orbit plane. It can be guessed that any core 
will exhibit some analogous precession. The core tilt angle is 
unknown. Goldreich [1967] considered viscous, turbulent, and 
shape effects and concluded that the coupling of the core to the 
_nantle is too weak to align the rotation axes of solid and fluid 
parts. Thus the core's equator is likely to lie closer to the ecliptic 
plane than to the mantle's equator, but it should exhibit some 
precession-induced motion. 

To compute the precession of core and mantle, a coordinate 
system rotating at the 18.6 year node rate is chosen. For the 
torques and angular velocities in the mantle system, the x axis 
points toward the intersection of the equator and ecliptic planes, 
and the z axis is normal to the equator plane; y completes the 
triad. There is an analogous set of axes for the core. The Euler 
angles are (1) the angle • from the equinox along the ecliptic 
plane to the descending equator plane, (2) the angle 0 between 
the equator and ecliptic planes, and (3) the angle {p from the 
intersection to the lunar zero meridian. Primed quantities are for 
the core, and unprimed are for the mantle. For uniform 
precession of core and mantle plus uniform rotations of mantle 
about the z axis and core about the z' axis {•= •, •= •'= fi, 

ß o 

0 = 0' = 0, and 0 = I. Then the core/mantle angular velocity 
difference in the mantle xyz frame is 
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WILLIAMS ET AL.: LUNAR DISSIPATION IN MANTLE AND CORE 27,945 

-•0' sinO' sin(xl/'-XlD •o'- •o = (p' [ cos 0 sin 0' cos(•'-•) - sin 0 cos 0' . (43) 
(p' [ sin 0 sin 0' cos(•t'-•t) + cos 0 cos 0' ] - 

To get the angular velocity difference in the core frame, 
interchange primed and unprimed quantities. 

For steady state precession the differential equations for the 
mantle in the xyz frame are 

(A+B) 
-C (l t to., sin 0 + 2 (1 t2 sin 0 cos 0: Tg x + K (to'-to) x , (448) 

0: Tgy + K (to'-tO)y, (44b) 

0 = Tgz + K (to'-to) z . (44c) 
A, B, and C are now the mantle moments, not the total lunar 
moments. The gravitational torque on the mantle is T g. The 
differential equations for the core in the primed frame are 
simpler: 

-C' (0' •' sin 0' = K (co-to)x,, (458) 

0 = K (co-tO')y,, (45b) 

0 = K (co-to')z,. (45c) 

There are no gravitational torques on a spherical core. 
The core equations are solved first. The second and third 

components are combined to derive (0 cos 0 = (p' cos 0'. Since the 
precession rates of coi'e and mantle are the same, their angular 
velocity components normal to the ecliptic plane, 4)'cos 0 + • and 
(0' cos 0' + (l t', are equal. However, the angular velocity normal 
to the mantle's equator to z = •p + (l t cos 0 is different from 
that norma! to the core's equator to•,= 4)'+ (l t' cos 0'. Define 
• =-(K/C'f2), which is positive since the node rate is negative. 
Then the solution for the core is 

cot(•'-•): •, (46) 

• tan 0 
tan 0' = , (47) 

N/1 +•2 

cos 0 N/l+tan20 '. (48) 

Since 0 is expected to be bigger than 0', the core must spin at a 
rate of •-99.96% of the mantle rate. 

To develope the gravitational torques T g on the mantle in the 
xyz frame, analytical expressions for Uij = (a/r) 3 u i uj were first 
written in the body-fixed frame and then rotated by q). Here the 
notation of libration theory is used for the mantle's uniform 
precession and rotation, so (p = F+x-o+180 ø, 'qt = fl+o, and 0 = I. 
The largest terms are linear in sin i and sin I, but third-degree 
terms which multiply sin i and sin I by sin2i, sin i sin/, sin21, and 
e 2 were included. These small third-degree terms, plus periodic 
librations multiplying the torque functions, were evaluated and 
combined with the numerical factors of the linear terms. Solar 

torques make a small contribution. Only the constant part is 
retained below. The best accuracy is needed for the first of the 
three components. 

3n2 Tg x = • { [ 0.9758 (C-A) + 0.0048 (C-B) ] sin I 
+ [ 0.9872 (C-A) + 0.0041 (C-B) ] sin i cos(o-z) }. (498) 

3n2 Tgy = •' { -[ 0.9833 (C-A) + 0.0059 (C-B) ] sin i sin(o-z) 
+ x [ (B-A) sin I- (C-B) sin i ] } . (49b) 

Tg z =-3 S 3 (B-A) n 2 ( x + T sin i ). (49c) 

Here x and o are constant, and S 3 = 0.9759. 
For the mantle prece.ssion s.olution the notation of libration 

theory is used with (I) = F, qt = f•, and 0 = I. The three constant 
torques cause a tilt I, a shift in the equator's node o, and a 
constant offset in longitude x: 

K 2/5 sin I cos I 
sin(o-z) = - • . (51) 

C (1+• 2) 3 n 2 sin i ( 0.9840 [3 + 0.0059 ct ) 

An upper limit can be put on K/C(I+• 2) by iising the constant 
Io =-0.265" found from the DE403 pure tidal solution. The 
K/C(I+• 2) limit is 3.4x10 -8 d -l, while the x limit is -0.021". 
Note that the x offset has a sign opposite that for tidal dissipation. 

The combination sin I sin F enters the range observations in a 
direct manner (see section 17), and the tilt ! may be considered a 
well-observed quantity. The following relation from the first 
component of (43), (448), (498), and the core solution links I to 
physical parameters: 

G t = -3 n 2 sin i cos(o-z) ( 0.9865 [3 + 0.0041 ct + E ), 

G b = 2.0002 • to z + 3 n 2 ( 0.9754 [3 + 0.0048 ct + E ) 

- 1.9982 •2_ 2 P • K 
C (1+•2) ß 

(528) 

(52b) 

t 
sin I = (52c) 

G b ' 

The inclination i = 5.145 ø, and the elastic combination 

E=k2•/3, where • is defined by (25). The combination 
[3=(C-A)/B is the solution parameter which most strongly 
adjusts the mantle's tilt when analyzing data, but there are weaker 
dependences on Love number, third-degree harmonics, and 
•K/C(I+•2). To account for the influence of C31 and C33, 
replace [3 and ct with the primed quantities defined by Williams et 
al. (2001). Also, Williams et al. used a Fourier analysis to extract 
i = 5553.63" from the DE403 numerical integration of physical 
librations. The physical parameters for the numerical integration 
were fit to the Lunar Laser data. The above expression is within 
1" of the numerical result. 

The magnitude of the spin rate difference between core and 
mantle is 

• sin I 

Io'- o1= X/l+ 2 (53) 
If the core couples strongly to the mantle (•>>1), then its spin 
pole nearly lines up with the mantle's pole. For weak coupling 
(•<<1), the core's spin pole is nearly normal to the ecliptic plane. 

11. Core-Coupling Parameter K 

The ratio K/C will be fit to data. The core-coupling constant K 
depends on fluid dynamics. In this section, interactions from two 
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possibilities, laminar and turbulent flow, are investigated. For 
these cases, K is a function of physical parameters, including core 
radius R' fluid density p', and kinematic viscosity v, 

At the core-mantle boundary a viscous interaction in a laminar 
boundary layer gives a stress proportional to v p' v, where the 
core-mantle relative velocity v = AtoxR '. Yoder [1981, 1995] 
gives 

C,= 2.6 R' (54) 

By assuming a core of uniform density, K/C' can be converted to 
K/C. From the maximum value given in the preceding section, 
set the numerical value of K/C = fc (1 .•2) 3.4x 10 -8 d -1, where 
fc is the fraction of the observed lo offset which comes from 
the core. The core radius in kilometers is then 

R'= 837 [fc(l+•2)/p']l/4/vl/8 with p' in gm cm -3 and v in 
cm 2 s -1. For the limiting case Offc=l a liquid iron core density of 
7 gm cm -3 and a viscosity of 0.01 cm 2 s -1 give a 900 km core, 
which other lunar interior data indicate is unacceptably large (see 
discussion in section 19). As Yoder [1981] concluded, the 
viscous laminar interpretation fails for the Moon, and an 
alternative must be considered. 

At a point on the core-mantle boundary the turbulent stress for 
relative velocity v=Ac. oxR' is equal to <p']v]v, where p' is the 
fluid density and < is a dimensionless parameter which depends 
on viscosity. (Topographic irregularities on the core-mantle 
boundary can give an additional stress.) Integrating the stress 
over the surface and computing the torque gives 

3 •2 ,5 K t: • < p'R A00. (55) 

Concerned about the oscillating direction of the relative velocity, 
Yoder [1995] replaced the scalar speed Ivl with its maximum 
value divided by x/2, but that is not done here. With the mean 
density of the Moon p and Ao0 from (53) one gets 

(•_•') 5 16 C K p •]1+• 2 (56) = 9It mR 2 C,k <p' sin/ 

Using the limiting case for K/C scaled by fc, the numerical 
expression for core Size is then 

R'= 145.2 km [fc (!_+•))3/2] 1/5 (57) 
<p' 

Yoder [ 1981 ] used < = 0.002. It is stated by Dickey et al. [ 1994] 
that < is within a factor of 2 of 0.001. Yoder [1995] gives an 
approximate boundary layer theory. With some rearrangement 
(the < symbol here and that used by Yoder are not the same 
parameter) and the addition of •, the functional and numerical 
(cgs units) forms for < are 

•= 0.4 , (586) 
In[ 0.4 •R' 2 ,k sin 2 1 ] - In[ v (1 -• 2) ] 

• = 0.4 (58b) 
2 In R' + In •d-•-< - In[ v (1+• 2) ] - 21.0 

The Karman constant is set to 0.4. This equation is solved 
iteratively if the radius is known. The < and R' equations are 
solved iteratively iffc is known; < depends logarithmically on the 
core size, kinematic viscosity, and •, so those uncertainties have 

modest effects. For a viscosity of 0.01 cm 2 s -1, a 400 km core 
gives <=0.00071, while a 300 km core gives <=0.00076. For the 
limiting case 0Cc=l) with the density of liquid iron (7 gm cm-3), 
the core radius is 421 km. Topography on the boundary would 
decrease this core size. For reasonable core sizes the theoretical 

K from turbulent interactions exceeds that from laminar flow, so 

turbulence is expected as Yoder [1981] concluded. The limiting 
core size differs from Yoder's 330 km limit mainly owing to the 
smaller value of < and slightly because of his 13% smaller pole 
offset. 

For core radii between 300 and 400 km the peak monthly 
velocity difference between core and mantle is 2 to 3 cm s -1 
(R' n sin/). Since C' is proportional to mean core density times 
R '5, the turbulent K/C' depends mainly on <, which is weakly 
dependent on core radius and viscosity. The dynamics of the 
core depend on K/C'. For the above values of <, the • is 0.02 and 
the core tilt to the ecliptic plane is 2', much smaller than the 93' 
mantle tilt. For dissipative effects, Goldreich's [1967] assertion 
is upheld. The core's equator intersects the ecliptic plane 89 ø 
ahead of the mantle's equator intersection. The core changes the 
mantle tilt by-0.006", which will be compensated during LLR 
data fits by changing [3 and other parameters. 

12. Core Differential Equations, Free Modes, 
and Damping 

Torque on the Moon from the Earth's gravitational attraction 
drives the forced librations and causes the mantle's free librations 

to oscillate about the forced state. The dissipative core-mantle 
interaction causes slow damping of the three periodic free 
librations, just as damping is also caused by tidal dissipation 
(section 7). Moreover, the core is capable of its own rotational 
motion, so there are additional free modes. These are damping 
modes, not oscillatory motion. The development of the core and 
mantle differential equations for rotation, the free modes, and the 
damping are this section's subjects. 

First, the coupled differential equations for the longitude 
librations are written for mantle and core. The uniform 

precession of mantle and core introduces functions of I, I' (mean 
0'), and •. Small nonlinear terms are dropped. The mantle 
equation is 

K cos 1 sin21 
:{;+3S3¾n2'r+ • (:r- :t' + /[' )=fz' (59) cos? 

The core longitude libration •:' contains the periodic terms in 
•' + q0'. The mantle moment C is used for ¾= (B-A)/C. C' is 
roughly three orders of magnitude smaller than C. The •'sin21 
term gives rise to the linear contribution in the constant offset. 
This was previously computed (equation (50)) and will not be 
considered further here. Small nonlinear terms are also dropped 
in the core differential equation. 

K( cos/) :i:' + •; :r'- i: =0 COS • ' (6O) 

Since the core is assumed spherical without any gravitational 
torque, there are x' derivatives but no x' term. Mantle 

periodicities are driven by core periodicities through terms 
factored by K/C'. Since C'/C is small, the coupling terms will 
influence the core more than the mantle. The m'-m component 
appears different in the two differential equations because two 
frames are used. The ratio cos 1 / cos I' is computed from 
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WILLIAMS ET AL.' LUNAR DISSIPATION IN MANTLE AND CORE 27,947 

cos 2 I sin 2 1 
= 1- (61) 

cos 2 I' 1+•2 ß 

The • =-(K/C'•), defined in section 10, depends on the 
(negative) node rate. 

The forcing term for the mantle comes from the 
U12=(a/r)3u 1 u 2 function factored by 3¾n 2 and the 0.9906 
numerical factor of (16), but the forcing function on the fight- 
hand side of (59) has the linear 'r term removed to give the 

3 S 3 ¾ n2'r on the left-hand side. The free librations are solutions 
of the mantle and core differential equations when the fight-hand 
side of (59) is zero. 

To investigate the free libration modes, substitute 
'r = a exp(iv t) and 'r' = a' exp(iv t) into the linearized differential 
equations. Two linear equations for a and a' result. The complex 
determinant of the coefficients of a and a' is 

K K sin2I 

At=-V2 [(3S3¾n2-v2)+ C C' •-•] 
K K 

+iv[(3S 3¾n 2-v2)•;-v2•]. (62) 

The inverse 1 /A t is A• /A t A•, where the asterisk denotes the 
complex conjugate: 

K K sin2I 2 

AtA•= V4 [(3S3¾n2-v2)+ C C, 1-•] 
K K 2 

+ v 2 [(3 S 3 ¾ n 2- v2)• - v2• ] (63) 
To find the free libration frequencies (real part of v) and 

damping (imaginary part) for the longitude modes, find the roots 
with the determinant (62) set to zero. The zero root means that 
the spherical core can be rotated by an arbitrary angle. While an 
exact solution of the remaining cubic is possible, approximate 
solutions are presented here. To guide the approximations, the 
sizes of parameter combinations are needed. The combination 
(3¾)1/2= 0.026 is well determined. For a small core, 
K/C' > K/C. For turbulent coupling K/C'n = 10 -4, which may be 
increased by boundary topography. From the limiting case, 
K/Cn _<l.5x10 -7. So for the lunar case the combinations n ( 3¾ 
)1/2 >>K/C'>>K/C are well separated. 

One of the roots of the cubic is near iK/C'. If the core rotation 

rate is not at the steady state value of (48) plus forced librations, 
it will damp very nearly as exp(-Kt/C'). This could have been 
guessed from the form of (42) and (60). For a homogeneous iron 
core, damping times of 140 years are expected for turbulent 
coupling. Topography would decrease the damping time. 

The (mantle) free libration frequency for longitude, with 
period 1056 days, comes from the square root of 3 S 3 ¾ n 2. For 
the Moon the free libration frequency is much larger than K/C', 
so the first bracket in (62) dominates the frequency. If the 
reverse were true, the free libration frequency would be 
determined most strongly by the second bracket and the 
¾ =(B-A)/C would be replaced by (B-A)/(C+C'). The core would 
rotate with the mantle. in general, there is a slight dependence of 
the free libration frequency on the strength of the core-mantle 
coupling. 

The damping for the mantle free libration mode is 

K 

Dœ = , (64) 
2 C (l+•z, 2) 

where 5,L = K/C'n •3S3¾ is the ratio of core damping constant 
to free libration frequency. For turbulent coupling, 5, L = 0.003 

(weak coupling). Then from the DE403 limiting case the core- 
induced damping time (1/DL) must be >l.6x105 years. The 
above damping expression agrees with Peale [1976]. 

The effect of the core on the latitude librations is more 

difficult. The Euler equations for the mantle (equations (1) and 
(40)) and core (equation (42)) are not in the same reference 
frame. The core differential equation can be expressed in the 
mantle body frame 

d(rto') K 
d• + toxI'to' = • ( to- to') , (65) 

where I'm' and the angular velocity difference are also in the 
mantle frame. 

The differential equations for mantle and core rotation are 
nonlinear owing to the fox operation as well as terms in the 
forcing torques. Except for the precession term of section 10, 
nonlinearities are small. A linear treatment suffices in most 

cases, but nonlinearities can be treated as additional forcing terms 
during an iteration. Analogous to the P l and P2 which describe 
the motion of the mantle's pole, the core parameters pl and p• are 
defined as 

-sin 0' sin( {p + •t- •r), (66a) 

p• = -sin 0' cos ({p + •t- •t'). (66b) 

This definition removes the rate difference between the core and 

mantle systems from the argument. 
The difference in angular velocities is needed in the mantle 

coordinate frame. Some small nonlinear terms are discarded. 

_pl •b sin 2_•/ P 2 sin 2 1 1 +cos I cos I- cos I + P lt½ 2 cos I' +/5• 2 cos I' 

-P2 •b sin2 1 P l sin 2 1 l+cos I Cos I + -p• b•- Pl cos I 2 cos I' 2 cos I' 

ß sin 2 1 cos/ 

-F •-•- + i' -i 1 + cos I' 

(67) 

The linearized differential equations for mantle and core rotation 
are 

K 

•J2 + 0)3 (1-•x)pl + {x 0)3 2 P2 + • cos I ( 0)1 - 0)i ) =fx, (68a) 

K 

-•Jl + 0)3 (1-[•)P2 -4 [3 0)3 2 p• + •cos I( 0)2 -0)• )=fy' (68b) 

j3• +[ 0)3 + (1-COS/) PlPi -P• (1-cos/) P0)3 
K 2 cos I' 

+ C' l+cos I ( 0)• - 0)• ) = 0, (69a) 

-•Jl +[ 0)3 +(1-COS/) Plp• +Pl (•-cos I) P0)3 
K 2 cos I' 

+ C' l+cos I ( 0)• - 0)2 ) = 0. (69b) 

The mean spin rate component 0)3 -- • + • COS I-- n. Terms of 
order sin 21 have been retained in the core differential equations 
since the core rotation rate, 0),2= 0)2_/•2 sin2I/(l+•2) from 
section 10's steady state rotation, is slower by such an amount. 
There is some conflict between the objectives of linearity, 
retaining sin2I terms, and the wish to simplify the core 

 21562202e, 2001, E
11, D

ow
nloaded from

 https://agupubs.onlinelibrary.w
iley.com

/doi/10.1029/2000JE
001396 by U

niversity O
f M

aryland, W
iley O

nline L
ibrary on [08/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



27,948 WILLIAMS ET AL.' LUNAR DISSIPATION IN MANTLE AND CORE 

differential equations by removing small terms. In (69a) and 
(69b), terms of order •2 sin 21 have been eliminated, so terms of 
order sin 2 I' are not complete. 

To get the free libration frequehcies and damping, zero the 
forcing functions on the right-hand sides and substitute four 
unknowns multiplying exp(ivt) for the mantle and core p 
parameters. The matrix multiplying the four unknowns is 4x4, 
and setting its determinant equal to zero gives an eighth degree 
polynomial for the free frequencies and damping. So 
approximations are in order (free libration frequencies 
>K/C'>>K/C). A first approximation is to solve the core and 
mantle differential equations separately, eliminating core 
variables in the mantle equations and vice versa. In this 
approximation the motion of the mantle's pole causes interaction 
with the core, but the mantle does not sense any response of the 
core (in the longitude damping, the response of the core shows as 
the 1 +•œ2 in the denominator). Similarly, the core does not sense 
the mantle's response. 

The complex 2x2 core determinant may be written as 

Ac [V 2 (•)2 K 1) 2 = -0332 - - 2 i v •; ] [ v 2 -(1-cos •b2 ]. (70) 
Setting it e. qual to zero gives four roots: -+033 + iK/C' and 
ß +(1-cos/) F. The first pair of roots means the core's pole of 
rotation could be tilted differently in space from that computed 
for core precession plus forced libration, but damping will move 
it toward the latter state. The K/C' damping parameter applies. 
The second pair of roots reflects the slower core rotation rate 
through the arguments in the definitions (66a) and (66b) based on 
the uniform solution of (48) and (61). A sphere does not have a 
unique principal axis, and there is no damping. 

The 2x2 mantle determinant is approximately (smallest terms 
discarded) 

Am = V4-V2 0332 ( 1 + 3 [•+ a •) +4a•033 4 
K 

- i v • ( 2 v 2 - 2 ]v03 3 sin21 - tx 033 2 -4 • 03 2 3 )' (71) 

Dw= 2'19x10- 3 K • . (73b) 

From the limiting case the damping time is _>3.7x 107 years. The 
above wobble damping does not agree with Peale's [1976] 
stronger result. The difference appears to arise from the toxI'tff 
term needed to express the core differential equation in the 
mantle frame. While there is a •w = K/C'n, it is very small. 
Yoder [1981] gives numerical values for damping time but not 
analytical expressions. For all three free modes the values are 
four to five times larger than this paper's values. 

To compare damping from turbulent core dissipation and tidal 
dissipation, consider cases with equal pole offsets. The core is 
more efficient than tides for damping the free precession. For the 
other two modes the core damping lies between the tidal cases for 
constant Q and Q-I/frequency. 

While it is convenient to refer to core and mantle modes, there 
is a small influence of the classical free librations on the core, 
and there is a small reflection of the core damping modes in the 
mantle rotation. For the mantle modes the • parameters 
determine the core/mantle amplitude ratio. For the precession 

mode, with the largest coupling, that ratio is ( • - i •p )/(1 +• p2). 
So the core response is nearly orthogonal in phase when • is 
small, but the core and mantle rotate together as •p approaches 
infinity. 

The core mode damping is very fast compared to the mantle 
damping. The damping of the three mantle free modes is too 
slow to allow K/C to be determined. In principle, the core- 
damping modes have a small influence on the mantle and if 
observed would be sensitive to K/C'. The expected mantle/core 
amplitude ratios are very small, and the short damping time 
(140 years for turbulent coupling) would make these effects more 
transient than the mantle modes. To be observable in the mantle 

rotation, the core modes would need strong stimulation in the 
recent past. 

The real part corresponds to the classical solid-body dynamics, 
and the imaginary part contains the dissipative terms. There are 
two free modes for the mantle pole. One is an 81 year free 
precession in space (frequency-- 313n/2 ), and the other is a 
75 year wobble of the pole as seen in the rotating frame 
(frequency = 2n (ct [3) 1/2 ). Dissipation affects these periods very 
little. A coupling-dependent shift of frequency analogous to the 
longitude mode is expected but does not come from the 2x2 
approximation. The damping of the mantle's free precession is 

K 

Dp = C (l+•p2) (72) 
The parameter •p = 2 K/3 [3 n C' is the ratio of the core damping 
to the free precession frequency. The dependence on •p does not 
come out of the 2x2 treatment. It requires additional terms from 

the 4x4 matrix. For turbulent dissipation, % = 0.1 is the strongest 
coupling of the three mantle modes and the 18.6 year forced 
precession. Topography at the core-mantle boundary could 
strengther• the coupling. The core-caused damping time is 
_>8.1x104 years. Peale's [1976] analytical expression is very 
complicated, and his numerical damping time is several times as 
large. 

The damping parameter for the wobble is 

K ct sin2 I 

Dw= • [ 213+-•-+ 1-• ]' (73a) 

13. Core Forced Terms 

Gravitational attraction acting on the mantle's figure ultimately 
drives all forced terms. The feeble interaction between the core 

and mantle induces weak mantle periodicities, orthogonal in 
phase to the main terms, and small core rotation terms. These 
small forced terms are computed in this section. 

In differential equation (59) periodic orbit terms and nonlinear 
terms (orbit times libration and libration times libration) force the 
system. For the longitude librations the nonlinear effects are 
small except for the constant offset ([3 term in (50)). The forcing 
function depends on a sine series for the largest terms. Here a 
periodic forcing function with frequency v is represented as 
3yn 2Hexp[i(vt+phase)]. The solution for the libration 
amplitudes for mantle, x=aexp[i(vt+phase)], and core, 
x'=a' exp[i(vt+phase)], gives complex functions. For a sine 
forcing function, the real and imaginary parts of a and a' 
correspond to a sine and cosine, respectively. 

Presented below are both the full solutions and the 

approximate solutions to (59) with the foregoing periodic form 
for the forcing function and solutions. As with the free libration 
calculations, the inequality n (3y) 1/2 >>K/C'>>K/C guides the 
approximations. The solution for the sine (in-phase) mantle 
libration includes both the conventional solid-body response and 
the core effects (with K). It is very close to the solution without 
dissipation, and the coefficient of a periodic sine term is 
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WILLIAMS ET AL.: LUNAR DISSIPATION IN MANTLE AND CORE 27,949 

as-- 

-v 2 K K cos 21 } (74a) C C' cos 2 I' ' 

3¾n2H 

as-- (3S 37n2-v2) (74b) 
The cosine mantle coefficient is 

ac---I K 3¾n2Hv 3 (•,)2 sin21 (75a) 

K a s v 

ac=-• (3S 3¾n 2-v 2) (1+•) (75b) 
The ratio •v = K/C'v measures the strength of the coupling 
between core and mantle at the forcing frequency. Cosine terms 
which have frequencies either much lower or much higher than 
the resonance frequency are suppressed, but a response is favored 
near the resonance. The core-caused cosine terms, factored by 
the small quantity K/C, are very much smaller than the 
conventional solid-body sine terms (equation (74b)), but they are 
larger than the small change in the sine terms due to the core. 

The mantle longitude series for the core effects is given in 
Table 7. The two largest planetary terms are too close to the 
resonance to separate from the free librations when fitting data. 
The remaining periodic terms are too small to detect. All of the 
periodic terms in Table 7 have weak coupling between core and 
mantle for the turbulent value of K/C'. For the annual term, the 

largest conventional longitude term, •v=0.001. 
The core's sine and cosine forced longitude coefficients are 

K 37n2Hv 2 
a's = C' A t At* 

K 

cos/ [ K cosI' (3 S 3 ¾n 2-v 2 ) C' 

(76a) 

as 
2 ' 

1+• v 
(76b) 

K 37n2Hv 3 cosI [ a'c = - •; A t At* cos ]; ( 3 S 3 7 n2 - v2 ) 
K K sin21 ] + C C' 1+•2 ' (77a) 

•v as 
a' c = - -- (77b) 1+•2 ß v 

For I•vl < 1 the cosine term is larger than the sine term. For 
increasingly larger •v the amplitude grows and the phase rotates 
until, as Ivl approaches infinity, the core couples strongly to the 
mantle and they rotate together. Lower-frequency forced terms 
couple core and mantle more strongly than higher-frequency 
terms. 

In the conventional longitude librations there is a 14" Venus- 
induced term with a 273 year period. The turbulent •v is 
estimated to be 0.3, so the core should have a long-period term of 
at least 4". Unfortunately, the influence of this term on the 
mantle librations is unobservable. For turbulent coupling the 
annual core term should be -0.1 ", and an 18.6 year term is -0.2". 

Table 7. Maximum Terms in Longitude Libration Due 
to Dissipation From a Weakly Coupled Fluid Core a 

Argument Period, z 
COS, 

days mas 

? 365.260 0.2 

2F-2œ 1095.175 1.3 

3E-5M-59 ø 1069.313 -0.2 
23E-21 V+2D-œ+ 15 ø 1056.415 3.0 

V-2E-D+ 2 •-F+25 7 ø 1056.345 3.2 
0 oo -21.1 

aAll terms use cosines of arguments. Angular units are 
milliarcseconds (mas). Planetary mean longitudes for Venus, 
Earth, and Mars are denoted V, E, and M. Core parameters are 
K/C(I+• 2) = 3.4x10 -8 rad d -l and C7C = 1.7x10 -3, with • = 0.022. 

Since the coupling is weak for all of the significant mantle 
longitude terms, and the LLR data analysis detects the resonant 
frequency through the coefficient a s, the ¾ defined with the 
mantle moment C is much closer to the measurable quantity than 
if it had been defined with the total moment C+C' (the difference 
in the numerator is the same with a spherical core). Holding the 
mantle C constant makes the differences of sine terms too small 

to list in Table 7. For the tidal acceleration, and the exceedingly 
long period (> 10,000 years) "secular" terms in longitude, the core 
should couple strongly to the mantle. The ¾ in (39) should use 
the total moment, but the induced displacement of longitude 
libration is small and not directly observable. For secular terms 
in longitude, the core acceleration matches the mantle 
acceleration, but the core rate is different by -hC'/K. There is no 
obvious way to use the secular terms to learn about the core. 

The more complicated latitude terms are done as 
approximations. From the 2x2 mantle matrix (71) one gets 
forced terms for Pl (complex coefficient a) and P2 (complex b). 
The forcing functions on the right-hand sides of differential 
equations (68a) and (68b) have been set to Xexp[i(vt+phase)] 
and -iY exp[i(vt+phase)]. This choice makes X and Y real for the 
largest forcing terms (X with a cosine and Y with a sine), and it 
associates the real part of a and b with a cosine and the negative 
imaginary part with a sine. The X forcing function comes from 
3 0in 2 0.9906 U23 cos/, and the Y function comes from 
-313n 2 0.9906 U13 cos/with the linear 313n2pl moved to the 
left-hand side of (68b). 

a • 

g . 

i[v 0) 3 ( 1 -[3)-i • Fsin 2 I]X 
A m 

i [v2-0t 0) 2-iv ] Y 3 Z 

A m 
(78a) 

K 

-[ v 2- 4 [3 0)3 2 - i v • ] X 
b-- 

A m 
K . 

[ V 0)3 ( 1 - tx ) - i • F sin 2 I ] Y 
+ Am (78b) 

Both numerator and denominator are complex. The main 
dissipation terms are factored by K/C, analogous to the longitude 
case. From the experiences with forced longitude librations, free 
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27,950 WILLIAMS ET AL.: LUNAR DISSIPATION IN MANTLE AND CORE 

Table 8. Maximum Terms in Latitude Librations Due to 

Dissipation From a Weakly Coupled Fluid Core a 

Argument Period, Pl P2 1(• p 
COS, Slrl, COS, sin, 

days mas mas mas mas 

F 27.212 

F-œ 2190.350 

0 • 

g 27.555 
2F-œ 26.877 

2F 13.606 

265.2 -265.0 

-1.4 0.8 

-265.6 -5.9 

-3.6 3.7 
1.5 -1.5 

-0.6 0.6 

aThe latitude physical libration parameters are pl, P2, P, and 1o. 
Angular units are milliarcseconds (mas). Core parameters are 
K/C(I+• 2) = 3.4x10 -8 rad d -i and C7C = 1.7x10 -3, with • = 0.022. 

librations, and the solution in section 10 it can be guessed that 

core response would put 1 + •v 2 in the denominator, where 
g/c'(Ivl-n). 

Table 8 gives the core-induced latitude series. It is dominated 
by the term for pole offset (the more elaborate solution of section 
10 is used for this term). Most of the 2190 day term is from a 
nonlinear contribution. Table 8 also gives the approximate 
conversion to p and 1(5 parameters. 

Of the forced terms in Tables 7 and 8, only the large pole 
offset term is easily observable. The forced physical librations 
are mainly sensitive to K/C, and the sensitivity to K/C' (or •) is 
very small in the tables. 

14. Sidereal Terms 

The Moon's orbit precesses along a plane which nearly 
coincides with the ecliptic plane, but this mean plane of 
precession is tilted by two causes. The oblateness of the Earth 
induces an 8" tilt toward the equator, and the resulting plane is 
commonly referred to as the Laplacian plane. The second cause 
is the motion of the ecliptic plane. This induces a 1.5" tilt 
because the orbit does not quite follow the ecliptic motion. The 
two tilts are oriented differently. The •v in the latitude solution 
of the preceding section is infinite for a term at the sidereal 
period (27.322 days in the rotating frame or zero rate in the 
inertial frame), and the solution there should not be used for such 
calculations. Both tilt effects are very close to the sidereal rate; 
the first case differs by the 26,000 year precession of the Earth's 
equator. 

The effect on librations of a fixed plane for orbital precession 
is intuitive. The rotating mantle and core precess along the same 
plane as the Moon's orbit whether that plane is the ecliptic plane 
or not. There are several reasons that this is not quite true for the 
Moon: the Sun is still in the ecliptic, there are figure-figure 
torques on the Moon from the Earth's oblateness, and the ecliptic 
plane is moving. The torques from the Sun will be ignored 
compared to the Earth's, and the figure-figure effect is 1% of the 
8". As Eckhardt [ 1981 ] showed, the effect of the ecliptic motion 
is sizeable, 6" in addition to the 1.5", because the differential 

equations must be modified. 
The differential equations for core and mantle can be written 

and solved in an inertial frame. The solution has a simple 
explanation. The pole of the ecliptic plane moves 0.470 "yr --l, 
and the axis of that rotation is at ecliptic longitude H = 174.87 ø at 
J2000 and moves slowly (-8.7 "yr-l). Both mantle and core 

precession nearly follow this motion. The solid-body rotation 
fails to follow by an angle given by the 0.470" yr -1 rate divided 
by the free precession frequency (0.47 "yr -• /2n/81 yr- 6.0"). 
For the steady state solution both spin axes move by the 
0.47 "yr -•, but there is a separation between the two axes such 
that the turbulent torque causes the core's axis to follow the 
motion. The core rotation axis is pulled along by the mantle 
owing to the core-mantle interaction. The core is fully coupled to 
the mantle, and the appropriate expression for the 6" term is 
0.47 (B+C')/1.5n(C-A). The phase is L- H + 90 ø, where the 
orbital mean longitude is L=F+f2. The classical latitude libration 
terms have weak coupling between core and mantle and are very 
sensitive to [3 =(C-A)/B, so the sidereal term associated with 
ecliptic motion has independent information on the core moment 
C'. The core-sensitive terms are 

• 

APl = 6.0" • sin( L- 84.87 ø ), (79a) 

• 

AP2 = 6.0" -• cos( L- 84.87 ø ). (79b) 

The expression for the ecliptic-motion-induced separation 
between the core and mantle spin axes is 0.47 "yr -1 C'/K. For 
turbulent coupling the spin axis of the core lags the secular 
motion of ecliptic and mantle poles by •-1 ', while it also precesses 
with a 2' angle. 

For turbulent coupling, section 1 l's limiting case of a 421 km 
iron core gives C'/C = 1.7x10 -3. This gives an upper limit of 
0.010" for the sidereal core signature. The two closest terms (in 
frequency) are the forced precession, with an 18.6 year beat 
period, and the free precession, with an 81 year beat. There are 
solution parameters corresponding to all three frequencies, and 
the 81 year beat period will weaken the determination of C'. So 
the term is large enough to be useful, but the separation of 
parameters will be a challenge. Increasing data span will very 
much improve the direct determination of the core moment. All 
of the terms in Tables 7 and 8 are orthogonal to the major (solid- 
body) terms of the same period. This can be an advantage when 
solving for K/C. The core-induced sidereal term does not have 
this advantage. 

The tidal dissipation Tables 3 and 4 have a sidereal term, but it 
was too small to include in Table 2. Split into the two phases and 
expressed in arc seconds, the two components are 

Ap• = -• [0.01 cosL+0.18 cos(L-84.87ø)], (80a) 

AP2 = • [ 0.01 sin L + 0.18 sin( L- 84.87 ø ) ]. (80b) 
The Q is monthly. The maximum for the tidal dissipation terms 
is 0.2 milliarcsecond (mas). This is much smaller than the 
maximum core effect, has different phase, and should be 
calculable from a monthly Q. The tidal elastic effect proportional 
to k 2 is orthogonal to the tidal dissipation, is several mas in size, 
and is more likely to correlate with C'. 

An additional effect, core-mantle boundary oblateness, has not 
yet been investigated. Given this unknown, the two sources of 
sidereal terms with two phases, and the 81 year beat period, the 
sidereal terms are not pursued further in this paper. They offer a 
very interesting future opportunity for direct determination of 
core moment. 
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15. Orbit Perturbations From Core Dissipation 

The gravitational attraction from a spherical core acts like a 
point mass and does not directly perturb the lunar orbit, but there 
is an indirect effect. The core-induced constant shifts in libration 

'r and c• (section 10) displace the mantle's principal axes from 
what would otherwise be their equilibrium orientations. The 
displaced figure of the Moon then perturbs the orbit. The effects 
are small, and leading-term approximations are used in this 
section. As is the case with tidal dissipation, the orbital 
perturbations are computed by the numerical integration 
programs from the accelerations. The approximations of this 
section do not enter those programs. 

Orbit perturbations from a displaced figure were also 
considered for tidal perturbations (section 8). The important 
effects are in semimajor axis a, mean motion n, and inclination i. 
The computation can proceed in a manner similar to section 8 
using the 'r and c• offsets of section 10. Changes in a and n are 
also related to the power drawn from the orbit and deposited in 
the core: 

P =-K ( •o' - •o )2, (81a) 

K/•2 sin 2 I 

Pave = - 1 + •2 (81 b) 
The secular mean motion and semimajor axis changes are 
calculated (approximately) from the mean power. The mean 
motion change is 

( Ati = -- /?2 1+ • -•- 3 • sin 2 I (82a) C (1+• 2) m ' 

K 
Ah = 1.1 lx106 "cent -2 . (82b) 

c 

The • is based on the node rate. The latter equation uses K/C in 
radians d -1 to give "cent -2. The limiting case gives an upper 
limit of 0.038 "cent -2 from the fluid core. The influence on the 

semimajor axis comes from Aft = -2 a Ah/3 n, so the relation is 

K• C (m) (R)2 Aft =-C(I+• 2) m R 2 1+• •- 2 a sin 21, (83a) 
K 

Aa = -1.64x10 3 m yr -I (83b) 
c 

Again, K/C is in radians d -1 to give m yr -•. For the limiting case 
this is-0.056 mm yr -l. 

In the first approximation there are no torques perpendicular to 
the ecliptic plane, but there are torques normal to the orbit. The 
semimajor axis and semilatus rectum expand at the same rate so 
the eccentricity rate is zero. There is also a torque in the orbit 
plane 90 ø from the node which gives rise to an inclination rate 

di K C (m)(3)2 sin21 d•=-C(l+• 2) mR 2 1+• sini ' (84a) 

di K 

d• = - 4.9 "yr -• (84b) C (1 +•2) ß 

The last equation uses K/C in radians d -1 to give inclination rate 
in "yr -•. The rate for the limiting case is-1.7x10 -7 "yr -I. This 
is too small to detect. The core influence on node and longitude 

of perihelion acceleration is about an order of magnitude smaller 
than for tidal dissipation for the limiting cases. 

For the same pole offset, tidal dissipation in the Moon 
provides an order-of-magnitude larger secular change of 
semimajor axis and mean motion than does core dissipation. 
Also, the tides change eccentricity, while the core does not. As 
with the lunar tides, the changes are opposite in sign to those 
from tidal dissipation on the Earth. The fluid-core-caused 
changes in a and n are three orders of magnitude smaller than 
rates caused by tides on the Earth. The differences in orbit 
perturbations from the three offer an opportunity to distinguish 
between them. This will be discussed further in the next section. 

16. Separation of Orbit Perturbations 

Can the secular rates of orbital semimajor axis, mean motion, 
and eccentricity be used to separate the contribution from lunar 
tidal and core dissipation? For semimajor axis and mean motion 
rates, tidal dissipation on the Earth is two orders of magnitude 
more important than lunar tides and three orders of magnitude 
more important than lunar core effects. In principle, one can 
subtract the Earth influence from the measured orbit changes to 
get the lunar effect. The measured pole offset gives a linear 
combination of the two lunar influences, and the total orbital 

effect depends on their proportion. 
To the secular acceleration h, the Moon contributes between 

0.038 "cent -2 (all dissipation in core) and 0.46 "cent -2 (all 
dissipation tidal). Table 9 gives the secular acceleration and 
eccentricity rates computed from tides on Earth. Tidal 
components are deduced from artificial satellite and Lunar Laser 
Ranging. The LLR model has Love numbers and tidal time 
delays for three frequency bands: semidiurnal, diurnal, and long 
period. The semidiurnal and diurnal time delays are LLR fit 
parameters. The DE403 lunar ephemeris was generated in 1995, 
and its secular acceleration from Earth and Moon dissipation is 
-25.64+0.4" cent -2. The predictions of tidal acceleration from 
the artificial satellite laser ranging (SLR) deduced tides are 
systematically -1 "cent -2 lower (in magnitude) than the LLR 
values. Half of this difference is understood. The SLR 

calculations of lunar acceleration do not correctly account for the 
finite mass of the Moon [Williams et al., 1978], which requires a 
correction factor of l+m/M = 1.0123. A modified Kepler's third 
law (used in (16a)) contributes an additional factor of 1.0028 
(using a=384,399 km from the average inverse distance). These 
two corrections increase the magnitude of the SLR values by 
0.4" cent -2. A review of the conversion of the LLR Earth and 

Moon tidal time delays to h shows that the published (negative) 

Table 9. Mean Motion and Eccentricity Rates Computed 
From Four Models of Earth Tides a 

Tide Model h, k, Reference 
,, cent-2 10-• yr-l 

GEM-T1 -25.27 1.83 Christodoulidis et al. [1988] 
GEM-T2 -24.94 1.68 Marsh et al. [ 1990]; 

Dickman [ 1994] 
Cartwright-Ray -24.88 1.59 Ray [ 1994] 
LLR DE403 -26.10 1.35 this paper 

aThe first three models depend in whole or in part on multiple tidal 
components deduced from artificial satellite laser range data analysis. 
The last corresponds to the model used in the lunar and planetary 
integrator with two adjustable tidal parameters fit to LLR data. 
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values of h need to be corrected by +0.15 "cent -2. Earth tides 
account for +0.10 "cent -2, and lunar semimonthly tides in 
Table 6 add 0.05 "cent -2. (The Dickey et al. [1994] value of 
h =-25.88_+0.5 "cent -2 becomes -25.73_+0.5 "cent-2.) Adding 
dissipation in the Moon to Table 9 does not improve the 
SLR/LLR disparity. Because LLR is sensitive to the total secular 
acceleration while SLR senses only Earth tides, lunar tides 
increase the SLR/LLR spread more than core dissipation. At 
present, knowledge of tides on the Earth is not sufficiently 
accurate to extract the lunar contribution to the observed secular 

acceleration from the difference between SLR and LLR values. 

The situation for eccentricity rate is more hopeful. The Moon 
contributes between-1.0x10 -ll yr -1 (all dissipation from tides) 
and 0 (all dissipation in core). The contributions from Earth and 
Moon are close enough in size that eccentricity rate is useful for 
learning about the Moon's interior. An eccentricity rate of 
-1.0x10 -ll yr -1 changes the perihelion distance by 3.2 mm yr -1. 
The LLR determination of eccentricity rate should improve with 
increasing data span. 

The internal accuracy of the determination of the dissipation- 
induced h is good. However, range perturbation exceeds 15 m 
during the data span! But the present uncertainty of tides on 
Earth does not permit this to be used for the lunar problem. 
Eccentricity rate is a much weaker signal, accumulating a few 
centimeters in range during the data span, but is easier to correct 
for tides on Earth. At present, the lunar rotation provides a direct 
test of lunar dissipation without corruption from external 
influences. Since the rotation effects are bounded while the orbit 

effects are secular, the orbit perturbations may assume greater 
importance in the future. 

17. Determination and Separation 
of Lunar Variables 

This section discusses how the lunar rotation terms affect the 

Lunar Laser ranges. It also discusses how the solution 
parameters separate from one another. The data analysis program 
uses rigorously derived partial derivatives of range with respect 
to the solution parameters, but for illustration, approximations are 
used. 

The range vector R from an observatory on the Earth to a 
retroreflector on the Moon is 

R = r- R s + R r. (85) 

The three position vectors are geocentric Moon r, the geocentric 
ranging station R s, and the selenocentric retroreflector position 
R r. Orientation matrices for the Earth and Moon are used to 
transform between space-fixed coordinates and body-fixed 
coordinates. When accurately calculating the round-trip time 
delay, two R vectors are needed. One "leg" uses the transmit 
time and the lunar bounce time, while the other uses the bounce 

time and receive time. Since Rs/r--I/60 and Rr/r--1/221, a first 
approximation for the range projects the two smaller vectors 
along the Moon to Earth unit vector u =-r/r: 

R = r+ u'(R s- R r). (86) 

At a given time, the difference in range to different 
retroreflectors depends on the reflector coordinates and the lunar 
orientation with respect to the Earth-Moon vector. In the lunar 
body-referenced frame, u is approximated by 

1 1 

U 1 = 1- •' U22 - •- U32 , (87a) 

u 2 -- sin[ ( 2 e sin • )- 'c ] , (87b) 

u 3 =-sin i sin F- sin(I+ p) sin(F-o). (87c) 

The direction of this vector is composed of the optical librations, 
due to the orbit (eccentricity e and inclination i terms), and the 
physical librations, due to rotation (I, 'r, p, and o). The e and i 
terms are leading terms of series for ecliptic longitude and sine 
latitude, respectively. See Eckhardt [1981] for the exact 
expressions. The selenocentric coordinates of a retroreflector 

project into the range direction as -U'Rr, where R r = (X, Y, Z) in 
the body frame. The main sensitivity of the range to the 
longitude libration comes from Y u 2, and the sensitivity to 
latitude librations comes from Z %. For the four retroreflectors, 
1339<X<1653 km, -521<Y<803 km, and -111<Z<765 km 
[Williams et al., 1996]. Figure 1 shows the retroreflector 
locations. At the lunar surface a selenocentric angle of 1" is 
equivalent to 8.4 m, but the projection into the range direction is 
<4 m for the retroreflector positions. Thus a few centimeter 
range accuracy is sensitive to physical librations at the =0.005" 
level, and numerous observations will improve on this during a 
solution. 

In the range data analysis program a partial derivative of the 
range (time delay) is required with respect to each solution 
parameter (P) for each leg of the round trip. For lunar parameters 
these partials are f•'(3r/3P+3R/3P), in the space-fixed system. 
The orbit is separate from the orientation of and location on the 
Moon. For illustration, in lunar body-fixed coordinates the 
partial of the -u.R r term is -u'3Rr/3P - Rr'•)u/•)P. The •)Rr/•)P 
includes partials with respect to the three selenocentric 
coordinates for each of the four retroreflectors plus partials for 
two Love numbers h 2 and l 2 for tidal displacements. The partials 
3Rr/3P come from the geometry and are not integrated. They are 
generated and projected into the range direction while processing 
data. The sensitivity to the reflector coordinates comes through 
the orientation of the Moon with respect to the Earth-Moon line. 
The tides vary with time, depend on location, and project 
according to variable orientation. A numerical integration 
program generates the partials of orientation 3u/3P and orbit 
3r/3P with respect to dynamical parameters. These dynamical 
parameters include •3, ¾, seven third-degree gravitational 
harmonics, Love number k 2, tidal time delay At equivalent to a Q 
inversely proportional to frequency, K/C, rotation initial 
conditions for solid body and core, and lunar J2' The projection 
into the range direction at the observation time is done when the 

range data is analyzed. Except for J2, these dynamical 
parameters are most sensitive through the orientation. To 
distinguish Q values at different frequencies, analytical partials 
3u/3P are generated and projected at the time of data analysis. 
On the basis of the series solutions of section 5 and Tables 1 and 

2, analytical partials are included for coefficients of five out-of- 
phase terms: 27.2 days and 2190 days for latitude librations, plus 
annual, 1095 days and 206 days for longitude librations. Since 
the p• and P2 parameters are coordinates rather than angles, the 
analytical latitude partials are implemented using their equivalent 
terms for constant o and 27.555 day variations in p and o. 

During solutions, how detectable and separable are the 
dissipation effects through lunar orientation? Except for the 
sidereal term, the dissipation terms are orthogonal in phase to the 
terms produced by the second-degree figure (triaxiality). There is 
little difficulty in separating orthogonal terms, even when they 
have identical periods, provided that the data span is long 
enough. Of the seven third-degree harmonics, three produce 
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Figure 2. Location of the three Apollo retroreflectors and the 
two French reflectors on Soviet Lunakhods. The spread of 
locations aids separation of parameters during solutions. 

terms orthogonal to the dissipation terms, and four (C30, C32, S31, 
and S33) produce terms that are phased like dissipation. The 
spherical harmonic functions for C30 and C32 are even in 
longitude and odd in latitude, while those for S31 and S33 are odd 
in longitude and even in latitude. The resulting libration series 
are dissimilar for the two pairs [Eckhardt, 1981; Moons, 1982b], 
but the paired members will correlate with each other. It is the 
separation of S 31, S33, K/C, and At (n k 2 At = k2lQ for monthly Q) 
that needs further discussion. 

Because of the good geometric spread of retroreflectors 
(Figure 2), the physical libration latitude and longitude 
components are distinguishable from each other and from the 
orbit. Table 10 displays the larger partial derivatives for S 31, S33' 
K/C, and two tidal dissipation models (Q constant and 
Q-l/frequency). Eckhardt [1981] and Moons [1982b] are the 
sources for the two harmonic columns; this paper provides the 
dissipation columns. The constant in x is not shown because it 
contributes nothing to the separation when reflector longitude (or 
X and D is adjusted during the solution. The x partials are 

tabulated because they are the physical libration part of u 2 in 
(87b). Instead of u 3, the similar, but simpler, Pl - x sin I cos F is 
used (Moons tabulates Pl and P2 rather than p and Io). The 
columns are normalized like unit vectors. 

Table l 0 may be used to understand what happens during the 
numerical solutions. Similarity down each column's series of 
argumentsffrequencies causes correlation, while dissimilarity 
promotes separation. First, notice that the dissipation columns 
are dominated by the precession pole offset (cos F latitude term), 
but this offset is zero for the harmonics. Only dissipative effects 
contribute to the observed 0.26" pole offset. Separation during 
solutions depends on the largest dissimilar coefficients, provided 
the data span is comparable to or larger than their periods •and 
beat periods with other major terms. The number of parameters 
in the fit must at least be matched by the number of detectable 
periodicities in the partials. In the simplest case the partials 
would be considered in decreasing order of size, but there are 
complications since of the three free libration modes one is near 
the 27.2 day F term (24 year beat period) and another is near the 
1095 day term (81 year beat). Though the LLR data span 
exceeds 24 years, the earliest data is an order of magnitude less 
accurate than the recent data. While the determination of the F 

term is weakened somewhat, the 1095 day term is more strongly 
affected. With this reasoning the following statements are made. 
(1) For 2 decades the fits of ephemerides, i•ncluding DE403, 
solved for harmonics plus the k 2 and At of the tidal model with 
Q-l/frequency (k 2 is phased orthogonal to the table's terms). 
Consequently, the 27.2 day, 3 year, and 6 year terms were of 
paramount importance aided by the 206 day term, which is next 
in size. (2) Adding KIC to the preceding solution parameters 
requires one or more additional distinct frequencies, e.g., the 
27.6 day term. (3) The obvious way to distinguish a different 
tidal dissipation law such as constant Q is to use the annual term. 
There is very little interference from the core or harmonics terms. 
(4) To test Q values at other frequencies requires either detecting 
very small terms or using an independently derived gravity field 
of high accuracy. Adding more solution parameters forces the 
fits to rely on smaller periodic terms in the partials for separation. 

Timescales from 1 month to 6 years are important for studying 
dissipation. Six years is a major periodicity in the rotation 
partials, and it is also a beat between the 27.2 and 27.6 day 
periodicities. For the broader goal of fitting lunar science 
parameters beyond those in Table 10, some rota•tion partials 
involve the same periodicities (but not the same coefficients), but 

Table 10. Comparison of Larger Periodic Latitude and Longitude Out-Of-Phase Libration Terms for 
Two Gravitational Harmonics, Two Q Scalings, and Fluid Core Coupling a 

Term Libration Period, S31 S33 
days 

Q-l/frequency Q constant K/C 

cos F Lat 27.212 0 0 0.982 0.992 1.000 
cos(F-O Lat 2190.350 -0.410 -0.178 -0.057 -0.066 -0.005 
cos(2œ-F) Lat 27.906 0.019 0.009 0.002 0.001 0 

cos(2F-20 -c 1095.175 -0.899 0.982 -0.181 -0.103 0.005 
cos(2œ-2D) x 205.892 -0.142 0.060 -0.022 -0.018 0 
cos œ' x 365.260 0 0.008 0.001 0.036 0.001 
cos œ x 27.555 -0.037 -0.012 -0.005 -0.005 0 
cos(2F-2D) x 173.310 0.023 0 0 0.001 0 
cos(œ-D) x 411.784 0.021 -0.008 0.003 0.002 0 

a The periodic latitude term is p• - x sin I cos F, the periodic longitude libration is x, and fluid core coupling is 
proportional to K/C. The partial derivatives in each column are normalized to unit column length Variety promotes 
separation during solutions. A periodic term is given if any coefficient in the row exceeds 0 020. 
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with sines rather than cosines. Other partials reverse the 
periodicities between longitude and latitude librations. Initial 
conditions of the rotation are equivalent to the three free libration 
modes at 27.3 days (with a 24 year beat with F), 1056 days 
(weakening the separation of the 1095 day terms), and 75 years. 
The reflector X partial starts with a constant and semimonthly 
terms. The leading terms for the Y and Z partials involve sines of 
• and F, respectively. The tidal displacements project into range 
as a third-degree function of reflector coordinates. All this 
variety promotes separation during solutions. Important qualities 
for extracting lunar science information are accurate ranges, a 
long data span, and a broad spread of retroreflector locations. 

18. Dissipation Solutions 

The high accuracy of the Lunar Laser ranges (0.5x10 -1ø 
relative to the distance), the substantial data span, and the 
geometrical diversity of multiple ranging stations and multiple 
lunar retroreflectors permit solutions for a broad set of dynamical 
and geometrical parameters. Solutions for dissipation 
parameters, and the implied tidal Q values and core existence, are 
subjects of this section. 

Lunar Laser ranges from March 1970 to July 1998 are the data 
set. Data from the earliest few years have uncertainties of 
0.2-0.3 m. Ranges from the most recent years can be fit with a 
2 cm root-mean-square (rms) residual. Ranges are from three 
sites on the Earth: McDonald Observatory, Texas, Observatoire 
de la C6te d'Azur (OCA), France, and Haleakala Observatory, 
Maui. The first two sites are currently operational. For further 
information on the ranging stations, consult Dickey et al. [1994] 
and Samain et al. [1998]. There are four actively used 
retroreflectors: Apollo 11, 14, and 15 and Lunakhod 2 (see 
Figure 2). 

The set of lunar solution parameters includes [3, ¾, J2' third- 
degree gravitational harmonics, Love numbers k 2, h 2, and l 2, tidal 
time delay associated with k 2, core-mantle coupling K/C, 
amplitudes for five dissipation-related analytical terms in 
rotation, and three-dimensional coordinates of the four 

retroreflectors. Also, integrator initial conditions for lunar orbit 
plus solid-body and core rotations comprise 18 parameters. The 
product of the gravitational constant and mass for the Earth and 
Moon (G(M+m)) and two (Earth) tidal dissipation parameters 
influence the orbit. Additional parameters include the Earth- 

Moon orbit about the Sun and, because the lunar and planetary 
data are fit jointly, planetary orbits. An analytical partial for an 
eccentricity rate is available. There are also geocentric 
coordinates for the terrestrial ranging sites, horizontal rates for 
plate motion, parameters for Earth orientation, precession and 
nutation, plus a stochastic procedure for Earth-rotation 
corrections which is important for the early observations. In 
addition to the choice of solving for a parameter or leaving it 
unchanged, parameters may be subject to linear constraints (e.g., 
one parameter may be forced to take a particular value, or two or 
three may be required to satisfy a linear relation). 

As discussed in the previous section and demonstrated in 
Table 10, errors in the gravity harmonics S31 and S33 will corrupt 
dissipation solutions. Of the usable dissipation terms, the annual 
term and the large displacement of the pole direction are the least 
sensitive to the gravity field. The solutions in Table 11 vary both 
the treatment of the harmonics and the use of solution parameters 
based on numerically integrated and analytical partial derivatives. 
The tabulated parameters are extracted from the larger solution 
set. In Table 11 the A symbol indicates an increment using an 
analytical term. Total values are used for the remaining five 
parameters in the table which come from the numerically 
integrated tide, core, and gravity field models. To get a total 
value for an analytical dissipation term, it is necessary to add the 
model influences, computed from the tables of this paper, to an 
increment marked by A. The tabulated rms uncertainty is 
normalized to the observational uncertainties. The weightings of 
the LLR data and sets of planetary data are adjusted so that the 
normalized rms is near one. The 12,455 lunar ranges are 29% of 
the total number. 

The first example in Table 1 1 (case A) uses numerically 
integrated partial derivatives to solve for the tide and core-mantle 
coupling parameters (k 2, tidal time delay, and K/C), the S31 
and S33 harmonics, and the annual amplitude. Implicit in 
the numerical tide and core models is an additional 

0.3 milliarcsecond (mas) for the annual term, giving a total 
dissipation effect of 3.7 mas. From the tidal and core parameters 
one computes the combined/(Jconst = -262.7+2.3 mas (time delay 
and K/C are correlated-0.973, so the uncertainty in the 
combination is small). The core model causes 33% of that offset. 
This first case is limited to one analytical coefficient because the 
harmonics are included as solution parameters. 

Luckily, the accuracy of the gravity field LP75G [Konopliv et 

Table 11. Three Solutions for Dissipation and Related Parameters a 

Parameter Unit Case A Case B Case C 

Norm rms I 0.8479 0.8490 0.8470 

k 2 10 -5 2874_+80 2867_+80 2868_+80 
Time delay day 0.1152_+0.0140 0 0.1079 
K/C 10 -8 d -l 1.122_--ff).257 0 1.317 

A•7206 mas 0 -1.0-+1.6 2.7_+1.6 
AZ365 mas 3.4_+ 1.8 4.1_+ 1.8 3.6_+ 1.8 
Az mas 0 -26.7_+5.9 3.0-+5.9 

1095 

AI•27.6 mas 0 7.5_+ 1.0 1.1 _+ 1.0 
Al{•const mas 0 -264.0-+5.0 4.6_+5.0 
S31 10 -6 5.64_+0.64 5.869 5.869 
S33 10 -7 -2.58_+0.11 -2.457 -2.457 
Ak 10 -l• yr -• 1.68_+0.48 0.65_+0.46 1.55-•-0.47 
h 2 I 0.034_+0.018 0.035_+0.018 0.041_+0.018 

aFree solution parameters are displayed with uncertainties, while fixed parameters lack 
uncertainties. Angles are in milliarcseconds (mas). The first line is the normalized root-mean-square 
residual for all lunar and planetary observations. 
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WILLIAMS ET AL.: LUNAR DISSIPATION IN MANTLE AND CORE 27,955 

al., 1998], based on Doppler tracking of Lunar Prospector (three 
months) plus earlier spacecraft, makes it practical to adopt one or 
both of the harmonics. With both tidal time delay and K/C forced 
to zero with constraints (the initial values for the numerical 

integration are not zero), which has the effect of canceling 
rotation and orbit effects from the numerical integration, and the 
LP75G values for S31 and S33, the coefficients of five periodic 
dissipation terms are solved for. This solution is case B in 
Table 11. When noise from the gravity field is added to the 
uncertainties in the table, the uncertainty for the 3 year 
coefficient is 7.1 mas, and that for 27.6 days is 1.2 mas. The 
constant pole offset is correlated-0.93 with k 2 since the tidal 
contribution depends on the product of k 2 and time delay. The 
constraints on tidal time delay and K/C move the pole in one 
direction, while the analytical term moves it back the other way. 
This presumably explains the increased uncertainty from case A. 

The case C solution fixes the tidal time delay and K/C to the 
numerical integration values used for data reduction (DE330 was 
generated using 2 years less data than the tabulated solutions) and 

fixes the S31 and S33 harmonics to the LP75G values. Analytical 
coefficients are solved for, but these are now corrections to the 

numerically integrated dissipation model. When those 
corrections are added to coefficients calculated from the model 

parameters, one gets-0.9, 4.0,-27.4, 7.4, and-262.6 mas, in the 
order of the table. The agreement between the second and third 
cases is quite good, which validates this paper's analytical 
theories for rotation. 

The similarity of the total annual effect across the three 
solutions (3.7, 4.1, and 4.0 mas for cases A, B, and C, 

respectively) illustrates its insensitivity to the gravity field. The 
pole offset shows a range of 1.4 mas. To compute the pole offset 
better than 1 mas involves such complications as solar effects and 
nonlinearities in the solution from changes in moment and k 2. Of 
the three solutions the rms residual from case B is slightly larger 
than the other two, presumably because it lacks small dissipation 
terms, other than the five in the solution, which are implicit in the 
numerical integration. 

Most of the annual term must be from tidal dissipation since 
the coefficient is insensitive to gravity field and core. The annual 
Q dominates the annual rotation term (Table 1). The annual tidal 
Q is -60 (-19, +49, uncertainties are symmetrical for l/Q). The 
remaining terms require more interpretation. 

Before attempting to interpret all five rotation terms, consider 
the influence of dissipation by both tides and core to give the 
observed (case B)-264+_5.0 mas constant and 7.5+_1.2 mas 
27.6 day latitude corrections. For a-264 mas offset entirely due 
to tides, Table 3 (constant Q) would predict a 15.1 mas term at 
27.6 days, while Table 4 (Q-l/frequency) predicts 12.4 mas. 
These predictions are larger than the observed correction by more 
than 6 and 4 times the uncertainty, respectively. Table 2 shows a 
dependence of the 27.6 day term on a 6 year Q as well as the 
monthly Q. Is it possible to adjust the monthly tidal Q and 6 year 
Q to match the two observed corrections? The mathematical 
solution gives a negative Q at 6 years. This is rejected as 
unphysical. To explain the two dissipation terms with core alone, 
Table 8 would predict-3.6 mas for the 27.6 day dissipation term. 
This prediction is too small by 9 times the uncertainty. The two 
observed latitude corrections of case B can be matched with a 

linear combination of tide and core dissipation. Define fc as the 
fraction of the -264 mas offset due to core dissipation. 

Combinations based on a constant tidal Q yield fc = 0.41, while 
those for tidal Q-l/frequency give fc = 0.31. A combination of 
core and tidal dissipation matches the two latitude terms. 

Tables 1 and 2 show that the five tidal dissipation terms of 
cases B and C depend on Q parameters at a variety of tidal 
periods. The number of independent Q parameters depends on 
the truncation level, and those parameters, if treated as unknown, 
can exceed the number of solution coefficients. A smooth 

function is needed for the Q dependence of tidal frequency. The 
Q is assumed to follow a power law Q = QF ( Frequency / •)w = 
QF ( 27.212 days / Period )w. The two special cases previously 
considered are w=0 for Q independent of frequency and w=-I 
for Q-l/frequency. A power law makes the tidally induced 
coefficients functions of two unknown parameters, the monthly 
Q F and the exponent w. The strength of the core interaction 
provides a third unknown (tic)' So there are three adjustable 
parameters available to fit the four significant coefficients. The 
206 day term does not have a significant detection and has a 
minor role in much of the following discussion. A power law has 
been used to model the frequency dependence of the solid Earth's 
Q (see section 20). In principle, expressions more complex than 
a power law are possible, and Tables 1 and 2 may allow more 
general forms to be tested in the future. 

For the five coefficients of the case B and C solutions we 

return to the hypothesis that rotational dissipation can be 
explained by tidal dissipation acting alone. The tidal coefficients 
for the 27.6, 206, 365, and 1095 day terms are calculated for a 
sequence of w values using k2/QF from the-264 mas pole offset 
(24<QF<_25 for-l<_w<0.6). The small terms are scaled to the 
large term, which has the least relative uncertainty. Figure 3 
shows the four curves for-l_<w_<l plus the solution coefficients 
from case B of Table 11. The time-delay model in the integrator 
matches w =-1, for which three solution magnitudes are smaller 
and one is larger than the tide-only prediction (they disagree by 
two to four times the uncertainties). Large positive values of w 
are incompatible with the sign of the 1095 day coefficient. The 
solution values for the annual and 1095 day coefficients cross 
their curves for small values of w, but the 27.6 day latitude term 
does not cross at all. 

Instead of holding QF fixed to the large offset term, a QF curve 
for a sequence of w values can be derived for each case B 
solution coefficient. The resulting curves are shown in Plate 1. 
If the power law representation is valid, ideal curves (no noise) 
should intersect at a single point corresponding to the correct 
tidal w and Q F, and curves generated from data should miss 
intersecting at that single point owing to noise. As can be seen, 
w =-0.2, Q F = 40 is promising for three curves, but the pole 
offset gives Q F = 24.4 for that w. A pure tidal solution is 
disappointing and does not reconcile these data within several 
times their uncertainties. 

Tables 7 and 8 show that the pole offset provides most of the 
signature due to a core. If a core contributes a fraction fc of the 
-264 mas offset term, then the (Plate l a) tide-only QF for that 
term will be scaled upward by 1/(1-fc), and the computed 
coefficient curves analogous to Figure 3 shrink to smaller 
magnitudes. The tidal and core tables (1, 2, 7, and 8) are used to 
compute the other four Q F versus w curves. When a core is 
added to tides the 27.6 day term shifts to lower QF and the other 
three curves move slightly. Plate lb shows the Q F versus w 
curves for fc = 0.34. Four curves pass near a single point. That 
point is w =-0.19+_0.13, QF = 36.8+_5.0 (correlation 0.25). The 
uncertainty for fc is then 0.09. Either using 1/QF curves or 
including the 206 day QF curve changes the "intersection" very 
slightly. If 1/QF curves and the 206 day curve are used, then 
w=-0.17+_0.13, QF=38.9+_5.4 (correlation 0.23), and 
fc = 0.37+_0.09. The use of 1/Qr curves may be a more 
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Figure 3. Dissipation signatures in rotation. The observed amplitudes (dashed lines), shown with uncertainties 
(dash-dot lines), are compared to theoretical amplitudes based on a power law dependence of tidal Q versus 
frequency (solid lines). The exponent of the power law is the abscissa. The measured amplitude of the largest term 
is used to scale the smaller terms. All of the dissipation is assumed to come from tides. 

appropriate weighting since the rotation amplitudes are 
proportional to l/Q, but it only makes much difference if a curve 
is displaced from the intersection. 

In Table 11 the case A solution corresponds to fc = 0.33+0.08 
and QF = 37.6+4.6, remarkably close to the above analysis 
despite the integrator's fixed value of w =-1. As seen in Plate 1, 
positive and negative curvatures help ameliorate systematic 
errors from the unadjusted w. 

What are the model coefficients? The computed coefficients 
using the above w =-0.19, QF = 36.8, and fc = 0.34 values are 
-3.4 mas for the 206 day coefficient, 3.9 mas for the annual, 
-25.7 mas for 1095 day, and 7.7 mas for 27.6 day. The 206 day 
term is discrepant at 1.5 times its uncertainty, and the other four 
are well within their uncertainties. The evaluation of the power 

law representation of Q as a function of tidal period gives the 
values in Table 12. The Q values for periods <1 month or 
>6 years are extrapolated outside of the most sensitive sampled 
band. 

The anomaly of Table 11 is the eccentricity rate. In Table 9 
the SLR-based terrestrial tidal models have more independently 
adjusted tidal components than the LLR model. An extra 
eccentricity rate of about 0.3x10 -ll yr -1 would have been 
compatible with the SLR models. In the solutions with integrated 
core and tide effects, cases A and C, the anomalous eccentricity 
rate is >3 times its uncertainty and much larger than variations 
between terrestrial models can explain. An explanation for this 
anomalous perturbation is not evident. The case B solution zeros 
out the integrated orbit perturbations from lunar tides and core. 
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Plate 1. Observed dissipation amplitudes are used to calculate monthly Q for a power law dependence of tidal Q 
versus frequency. The curves (solid lines), shown with uncertainties (dotted lines), would intersect for an exact 
solution. (a) The tide-only case fails to represent the observed amplitudes within uncertainties. (b) Dissipation 
from tides plus core gives a consistent solution. 
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27,958 WILLIAMS ET AL.: LUNAR DISSIPATION IN MANTLE AND CORE 

Table 12. Value of O as a Function of Tidal 
Period Using the Power Law Representation 
• = 36.8 ( 27.212 days / Period )-0.19 

Tidal Period Q Uncertainties 

1/3 month 30 -5 + 8 
1/2 month 32 -5 + 7 
1 month 37 -4 +6 

206 days 54 -11 + 19 
1 year 60 -15 +30 
3 years 74 -24 +65 
6 years 85 -30 + 105 
75 years 137 -64 +950 

In section 15 no eccentricity rate was found from a core, so a 
core-only model (fc=l) should give the rate correction of case B. 
That correction is 1.4 times its uncertainty, but eccentricity rate 
could be reconciled with its uncertainty if tides on the Earth give 
the higher rates of the SLR models. However, a core-only model 
(see Tables 7 and 8) is not compatible with three rotation terms of 
the case B solution. The 27.6 day coefficient is of opposite sign 
and the difference (solution minus Table 8) is 9 times its 
uncertainty, while the 1095 day and annual terms are 4 and 2 
times their uncertainties, respectively. The solutions do detect 
tidal effects on the Moon. (Not solving for an anomalous 
eccentricity rate causes larger solution values for K/C.) There are 
several reasons that the rotation is preferred over the orbit for a 
core test. Four dissipation terms are detected for rotation, three 
of them exceeding 4 times their uncertainties, while the more 
weakly detected anomalous eccentricity rate is a single 
discrepancy. The rotation is influenced by lunar dissipation 
alone, while the orbit is influenced by dissipation in Earth as well 
as Moon. Still, the anomalous eccentricity rate serves notice that 
the dissipation is a complex problem and total understanding has 
not been achieved. 

The differences between solutions can be used to check the 

secular orbit perturbations for n and e due to tides (Table 6) and 
core (section 15). When case B was subtracted from cases A and 
C, the change in the secular acceleration from dissipation in the 
Earth was the expected size but opposite in sign to that calculated 
from the Moon (the sum should nearly be invariant), confirming 
the theory for mean motion and semimajor axis change. For 
eccentricity rate the difference between solutions was 1.5 times 
that calculated, so the theory for eccentricity rate may be 
inadequate. Questions about the scale of the theory for 
eccentricity rate due to tides on the Moon are avoided by using 
case B, which gives a total rate of 2.0x10 -ll yr -l. There is no 
comparable check on the theory of eccentricity rate for tides on 
the Earth, though other theoretical values are compatible 
[Chapront-Touzd and Chapront, 1988]. Thus not only does the 
orbital eccentricity rate appear to be higher than expected, but 
there is also an incompatibility between theory and numerical 
integration. 

Tidal and core dissipation together match the LLR solutions 
(coefficients or integrated parameters) much better than tides 
acting alone. Notably, the failure of the 27.6 day coefficient to 
intersect the theoretical curve in Figure 3, or, equivalently, the 
wide discrepancy in Plate la between the QF derived from the 
27.6 day and constant coefficients, is a major problem for a tide- 
only explanation of dissipation. Tides plus a fluid-core/solid- 
mantle interaction satisfactorily explain the lunar rotational 
dissipation data. 

19. Molten Core: Implications and Comparisons 

Detection of dissipation effects at four rotation frequencies 
supports both solid-body tidal dissipation and a molten core. 
What do these results indicate about the lunar interior, and how 

do they compare with other scientific information? This section 
discusses the core, and the next discusses the solid body. 

The Lunar Laser data analysis indicates a liquid core and 
determines a coupling parameter. While the coupling constant 
depends on radius, and on the composition of the fluid core 
through density and viscosity, these are not separately measured. 
Much of the lunar core literature concerns a metallic core, usually 
iron and iron alloys, and that is reflected in the following 
discussion. 

The core boundary pressure should be near 50 kbar. A fluid 
core is likely to include sulfur and nickel along with iron. 
Adding sulfur to iron reduces the density and markedly lowers 
the melting point. While pure Fe at 50 kbar melts at 1660øC, the 
Fe-FeS eutectic point is near 1000øC [Brett, 1973]. Adding 
nickel can further lower the eutectic temperature to •-940øC and 
can increase the density a few percent. The amount of sulfur in 
the core and the behavior of the Fe-FeS system are of 
considerable importance to the state of the liquid core; the effect 
of nickel is less dramatic. 

Metallic iron is inferred in the mantle, and Stevenson and 

Yoder [1981] argue that a core would be on the iron-rich side of 
the Fe-FeS eutectic composition (25 wt % S). Cooling such an 
Fe-FeS melt in the liquid+solid part of the phase diagram would 
precipitate solid iron while concentrating the sulfur in the liquid 
phase. Freezing all of the liquid requires a temperature below the 
eutectic temperature. Liquid-outer/solid-inner core models are 
distinct possibilities. Completely fluid or solid cores are end- 
members. A completely solid core cannot have been reached 
since there must be at least a thin fluid shell to apply the torque 
that LLR analyses detect. Yoder's theory has a turbulent layer of 
thickness equal to the horizontal motion R' sin I-- 10 km, so this 
sets a minimum liquid shell thickness for the calculations to be 
meaningful. The relative sizes of the inner and outer cores would 
depend on the initial S/Fe proportion and the present core 
temperature. For a core of radius of 350 km with a present 
temperature of 1400ø-1700øK, and evolutionary cooling of 
50ø-150 ø, Stevenson and Yoder calculate a sulfur mass fraction 

of 0.04-0.13 and a liquid shell thickness of 65-180 km. 
The fluid-core/solid-mantle coupling constant is discussed in 

section 11. The solution parameter is K/C, but the moment C is 
known well enough to use K. Equation (57) relates core fraction 
fc, fluid density, a theoretical parameter •c based on turbulent 
boundary layer theory, and core radius. The parameter •c is 
calculated for a thick turbulent layer adjacent to a thin laminar 

Table 13. Limiting Cases, in Terms of 1 c•, for Four Core 
Configurations Composed of Iron and Sulfur a 

Liquid Solid Max R', Max m' Max C' n•- •- Min • •c 
Outer Inner km 10 --4 10 -4 

Fe none 352 0.018 7.3 0.022 7.3 

Fe Fe 352 0.019 8.0 0.020 -- 

Eutectic none 374 0.016 7.4 0.021 7.2 
Eutectic Fe 374 0.023 10.8 0.015 -- 

aColumns are given for radius, core/Moon mass ratio, core/Moon 
moment of inertia ratio, • = -K/C'•, and •c. The eutectic composition is 
25 wt % S and 75 wt % Fe. 
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boundary layer using (58) based on Yoder's theory, but 
topography at the boundary has the effect of increasing •c. 
Consequently, the core sizes here are treated as upper limits. 

The Lunar Laser Ranging determination gives fc = 0.34_+0.09. 
For a liquid iron core the corresponding radius is 
335 (-21,+17)km. So the 1-o upper limit of 352 km has the 
uncertainty added to the estimated value. Table 13 presents such 
upper limits for core radius and also core/Moon ratios for mass 
and moment of inertia. The two ratios assume a homogeneous 
core density. The four cases are (1) a liquid iron core, (2) a thin 
liquid iron shell over a solid iron inner core, (3) a liquid Fe-FeS 
core at the eutectic composition, and (4) a thin liquid Fe-FeS 
eutectic shell over a solid iron inner core. The adopted densities 
are liquid iron 7.0 gm cm -3, solid iron 7.7 gm cm -3, and the 
Fe-FeS eutectic 5.3 gm cm -3. 

The generation of Table 13 is subject to several caveats. An 
approximate turbulent boundary layer theory is used. A liquid 
shell thinner than 10 km would cause problems. Also, adding the 
uncertainty to the estimate gives a 1-o limit, not a strict upper 
limit. Likely outweighing these concerns is the unknown size of 
core/mantle topography. Doubling •c reduces the size of the core 
by 13%, decreases the mass ratio by 44%, halves the moment 
ratio, and doubles the •. If there is a solid inner core, the liquid 
outer core has two surfaces for dissipation (and two values for •c), 
and like topography, this would cause the radius to be 
overestimated. An inner core could have its own rotation, 

increasing the complexity of the dynamics. It is assumed that the 
inner and outer cores rotate together to get those two limiting 
cases in Table 13. 

The detection of the large pole offset term 2 decades ago did 
not allow separation of causes. Yoder [ 1981 ] argued that the tidal 
Q was not expected to be small enough to give the observed 
offset and therefore proposed a liquid core as the source. This 
paper finds both strong tidal dissipation and a substantial core. 
Yoder's [1995] boundary layer theory weakens the coupling 
constant by a factor of 3 over the 1981 skin friction value 
0c=0.002), but since this paper finds that the core causes --1/3 of 
the observed pole offset, the resulting core size is similar to that 
given in the 1981 paper. 

How do the results of Table 13 compare with other 
information on a lunar core? Analyses of Apollo-era 
measurements on the magnetic induction of currents and of a 
magnetic dipole moment put an upper limit on core radius of 
400-500 km [Wiskerchen and Sonerr, 1978; Goldstein, 1979; 
Russell et al., 1981; Hood, 1986]. Recent measurements of the 
induced dipole moment by the Lunar Prospector spacecraft give 
340_+90 km [Hood et al., 1999]. 

Successful models of the lunar interior must be compatible 
with seismic results, plausible compositions, mean density, and 
moment of inertia. Such models favor a dense core. Binder 

[ 1980] finds the radius of an iron or iron-rich core to be between 
200 and 400 km. Consideration of a variety of interior models by 
Hood and Jones [1987] led to metallic cores from 250 to 460 km 
(1-4% mass fraction). Their upper limit was set by the magnetic 
induction results. A study by Mueller et al. [1988] concluded 
that a metallic core of at least 150 km was necessary. A smaller 
core would require a crustal density below 2.9 gm cm -3. Kuskov 
and Kronrod [1998a, 1998b] estimate a core of 320-390 km for 
iron and 490-600 km for FeS. The Apollo era provided most of 
the data for the models, but the recent improvement in the 
moment of inertia [Konopliv et al., 1998] strengthened the model 
results. None of these conclusions conflicts with the limits of 

Table 13, though the tabulated limits are generally more 

restrictive on the upper limit. The LLR results require a liquid 
core or shell, while the model results can be solid or liquid. 

Seismic waves have been successful at probing much of the 
Moon, but the deepest regions are more difficult. One ray 
traversing the core region was either very weakly detected and 
delayed [Nakamura et al., 1974] or ambiguous [Goins et al., 
1981; Sellers, 1992]. If the late P wave arrival of Nakamura et 
al. is valid, then a molten core with radius 170-360 km is 

indicated. The inferred P wave speed through the core is lower 
than expected from pure iron, inspiring consideration of an FeS 
core. Sellers finds that a relocation of the impact would satisfy 
the data but suggests arrivals for two other events consistent with 
a low-velocity core about 400-450 km in radius. Free 
oscillations are sensitive to interior structure. Khan and 

Mosegaard [2001] have searched the seismic records for free 
oscillations following impacts. The spectra were stacked to give 
a signal-to-noise ratio of--1.9. Their inversion does not show a 
liquid core, but a fluid shell could be unresolved by the 100 km 
granularity of their deep structure model. 

Siderophile elements are expected to accompany iron into a 
core. Their abundances are depleted in lunar rock samples with 
respect to both primitive meteorites and the Earth's mantle. 
Newsom [1986] finds the depletion consistent with a metallic 
core of 5% mass fraction if the Moon formed from chondritic 

siderophile abundances. Starting with the Earth's mantle 
composition would generate a smaller core (mass fraction 
<_1.2%). In a study of core formation, Righter and Drake [1996] 
get best agreement with siderophiles for a 5% core mass fraction 
but offer a 1% alternative. The sulfur mole fractions are 0.15 and 

0.20, respectively. The larger core mass fractions are not 
compatible with the Lunar Laser results. 

Thermal models exhibit variety. The example by ToksiSz et al. 
[ 1978] has the center warming up with time, and it is stated that if 
a core is present, it is liquid. On the basis of several models, 
Toks//z states that the central temperature can be 1000ø-1600øC. 
Binder and Lange [1980] present an initially molten Moon which 
mainly cools in the upper layers. Schubert et al. [1980] have 
most of the temperature gradient across a 290 km lithosphere, 
while a deeper convecting zone is isothermal. The central 
temperature has cooled up to 150øC. Konrad and Spohn [1997] 
and Spohn et al. [1999] start with a hot interior containing a 
liquid core. Cooling of the upper mantle forms a lithosphere, 
while the deepest zones cool only modestly. The former paper 
finds that the core remains molten to the present if its sulfur 
content is --8% or more. 

Many ancient lunar rocks with ages from 3.1 to 4.0 billion 
years show remanent magnetization. The strongest 
magnetization is from 3.6 to 3.9 billion years ago [Cisowski et 
al., 1983; Cisowski and Fuller, 1986]. One interpretation is that 
the early Moon had a molten core with a dynamo which is no 
longer in evidence. There are several problems. Thermal 
evolution models which start with a cold interior do not heat the 

center fast enough (-1/2 billion years) to melt a core and provide 
an early dynamo. Sources of energy to power a dynamo have 
proved elusive [Stevenson, 1983]. A dynamo would turn off if 
the core solidified or if the vigor of fluid convection decreased 
below a threshold. Stevenson [1980] has proposed asymmetrical 
core formation with temporary dynamo action. The current 
absence of a global magnetic field does not preclude a partly or 
wholly molten core or a past field. 

The power dissipated in the turbulent boundary layer is 
(1.9_+0.5)x1022 ergs yr -1. This is a minor source of heating at 
present (see next section) but may have been important in the 
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past. This power scales in proportion to }c n 3 sin3I/(l+•2) 1-5 
The dissipated power would have been strong when the Moon 
was near the Earth, but another maximum occurs near 

200,000 kin, just over half of the present distance. There the 
Moon passed through a change of spin state with the equatorial 
tilt I taking large values [Ward, 1975]. During this transition the 
core dissipation would have been -1027 ergs yr -•, provided that 
the core was liquid and of present size. Stevenson [1983] states 
that about 3x1024 ergs yr-• is needed to drive a dynamo 
sufficiently powerful to explain the strongest reinanent 
magnetization. The turbulent power per area is not spherically 
symmetrical; for power proportional to differential velocity 
cubed, the ecliptic poles receive 3n:/4 = 2.36 times the average 
along the equator. Even though it is deposited in the upper part 
of the liquid, such a nonuniform distribution of power can 
promote convection and, presumably, drive a dynamo. If there is 
an inner core, then some energy would be deposited at the lower 
boundary as well. If core dissipation was the source of energy 
for the generation of a paleoriel& then the period of stronger 
magnetization could mark the time of high tilt near the change of 
spin state; the power would decrease sharply, and convection 
would stall as the Moon evolved outward. 

Attributing part of the lunar rotational dissipation to a liquid- 
core/solid-mantle interaction is compatible with other lunar 
science data, though it is not compatible with large-core 
(>400 km) interpretations. Of the other lunar science 
information, only the uncertain seismic datum indicates a present 
molten core. Free oscillation data may favor a liquid shell over a 
fully molten core. The 1-(5 limits of Table 13 indicate a small 
liquid lunar core with a mass fraction up to -2%. 

20. Solid Body: Implications and Comparisons 

Solid-body tidal dissipation effects are detected at four rotation 
frequencies. This section discusses the implications for the lunar 
interior and the comparison with other science results. 

An Earth analog would be useful for interpreting the tidal Q 
values for the Moon. The Earth's total response (solid body + 
oceans) can be measured at several periods: diurnal and 
semidiurnal through tidal effects, monthly and semimonthly 
through the response of the Earth's rotation to zonal tides, and 
14 months through the Chandler wobble. Because of strong 
ocean responses, the solid-body tides are difficult to separate 
from the total measurements. At longer periods the oceans are 
expected to be closer to equilibrium. A determination of the 
solid-body semidiurnal Q of 370 (confidence interval 200-800) 
has been reported [Ray et al., 1996]. Anelastic theory using a 
power law for Q favors a small positive value of w such as 0.09 
[Smith and Dahlen, 1981 ]. In this paper (and in Ray et al.) the Q 
is defined from the phase shift of the k 2 tidal response which is 
the measurable quantity. Call this whole-body value the tidal Q. 
The properties of the Earth are not uniform, and the tidal Q is a 
function of the mantle Q, most strongly the lower mantle. If 
w=0.09 is used to extrapolate the Ray et al. value, then the tidal Q 
would be 260 at 1 month and 205 at 1 year. The corresponding 
lower mantle Q values are model dependent, but from tabulations 
of Wahr and Bergen [ 1986], Qmantle = 0.6 Qtidal for w=0.09. The 
monthly lunar tidal Q of 37 is surprisingly low by comparison 
with the Earth. There is less difference at the annual period, 
particularly if the uncertainties are considered. The lunar 
w=-0.19_+0.13 from the power law fit indicates a slight 
dependence on frequency, but with a different sign than is used 
for Earth models. 

Theories of viscoelastic rheology have the intent of connecting 
dissipation at a wide range of timescales [Ross and Schubert, 
1986]. When 1/Q is small, then a Maxwell rheology gives Q 
nearly proportional to frequency (w--l), while for a Kelvin-Voigt 
rheology, Q is nearly proportional to inverse frequency (w=-l). 
The LLR result of w=-0.19+_0.13 is in disagreement with both. 
The third model considered by Ross and Schubert has two 
adjustable parameters and can fit shallow frequency dependence 
over a restricted spread of frequencies. 

There are lunar seismic determinations of local Q versus depth 
based on frequency bands near 1 and 8 Hz [Nakamura, 1983; 
Goins et al., 1981]. The P and S wave seismic data show 
Q>1000 in the upper zones, much larger than for the Earth, 
perhaps owing to the anhydrous nature of lunar rocks, with Q 
decreasing with depth. Nakamura and Koyama [1982] find that 
the S wave Q increases with frequency above 5 Hz. Goins et al. 
call the region below 1100 km depth the attenuation zone. Both 
S and P waves are diminished, but the attenuation in this zone is 

stronger for S waves than for P waves. Goins et al. say Q<500 
and Nakamura et al. [1982] say Q<100 for S waves. The Q 
values of both the LLR analysis and the S wave data correspond 
to dissipation associated with the rigidity or shear modulus. The 
anelastic theory for the Earth treats dissipation at seismic through 
Chandler wobble frequencies as arising from a common 
phenomenon. If the Moon can be treated similarly, then it 
suggests that the attenuation zone may be the cause of the low 
tidal Q. However, this would imply a very small local Q for the 
attenuation zone since it has only 4% of the lunar volume. If the 
bulk of the tidal dissipation is not in the attenuation zone, then 
the seismic and long-period tidal Q values are both larger than 
the monthly Q and a simple power law cannot connect them. It 
has been suggested that the seismic attenuation zone is due to a 
partial melt [Nakamura et al., 1974; Goins et al., 1981]. If the 
lunar tidal Q mainly arises from a partial melt, then it is unlike 
the Earth's solid-body tidal Q. 

One of the consequences of anelastic theory is that it causes 
the Love numbers to be frequency dependent, violating one of the 
assumptions of this paper. There are pairs of terms which cancel 
because of this assumption. So there would be additional terms 
from the tidal torques, but orthogonal to this paper's dissipation 
terms. 

Just above the attenuation zone lies a region (depth 
700-1100 km) of deep-focus moonquakes. The juxtaposition of 
the two zones could indicate that an abrupt change in rheological 
properties is concentrating the strain [Goins et al., 1981]. The 
deep moonquakes repeat monthly and appear to be triggered by 
tides. 

For all of the solutions in Table 11, the secular acceleration Ah 

from tides on Earth and Moon plus core interaction is 
-25.9 "cent -2, and the semimajor axis rate change is 
At5 = 38.2 mm yr -l For a lunar Q of 37+5 the tides cause 
changes of 0.29+0.04 "cent -2 and -0.43+0.06 mm yr -•, 
respectively, while the core-mantle interaction gives only 
0.013+0.003 "cent -2 and -0.019+0.005 mm yr -l The rate of 
energy deposited in the Moon is equal to the rate of energy drawn 
from the orbit: (4.3+0.6)x1023ergsyr-• for tides and 
(1.9+0.5)x1022 ergs yr -l for the core-mantle interaction. The 
dissipation rate expressed as a steady state flow through the lunar 
surface is 3.8 nwcm -2, much smaller than the 
(radiogenic+cooling) heat flow: 480 times smaller than the 
1.8 •w cm -2 of Langseth et al. [ 1976] and 320 times smaller than 
the 1.2 •w cm -2 of Warren and Rasmussen [1987]. Though 
former assumptions about lunar Q are now removed, we concur 
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with earlier studies [Kaula, 1963, 1964; Kaula and Yoder, !976; 

Peale and Cassen, 1978] that tidal heating for the present bulk 
Moon is not important compared to radiogenic heat sources. 

How does the tidal power compare with the energy released by 
tidally triggered deep-focus moonquakes? Goins et al. [1981] 
give 8x1013 ergs yr -1 for the latter. It is plausible that tidal 
energy powers these moonquakes. The tidal power is ten orders 
of magnitude larger than the deep-focus energy release. On 
average the energy dissipation in a 2 km region is comparable to 
the total deep-focus seismic release. The AI focus has a size of 
---1 km [Nakamura, 1978]. The stress drop is compatible with 
tidal strains [Toks6z et al., 1977' Cheng and Tokseiz, 1978], and 
the moonquakes reverse direction during part of the tidal cycle. 
Whether tidal energy powers the moonquakes or not, it is clear 
that the energy dissipated in deep moonquakes does not 
contribute significantly to the tidal Q. For shallow-focus 
moonquakes, Goins et al. give an energy release of 
2x1017'ergs yr -1, but there is no evidence that these are tidally 
influenced. 

The Lunar Laser analysis determines a bulk tidal Q, and it is 
unknown whether this low Q is a widespread property of lunar 
rock or whether there is a localized zone of high tidal dissipation. 
First consider the distributed case. For steady state thermal 
models with uniform conductivity (3.5 w m -1 øC-l), uniform tidal 
energy deposition, and no convection, the mean temperature of 
the Moon would increase 3.5øC, and the center would rise 9 ø. 

This is minor compared to radiogenic heating. In addition to tidal 
dissipation, 4% of the total energy is being deposited in a thin 
boundary layer (roughly 10 km thick, according to Yoder's 
theory) at the core-mantle interface. This should raise the 
temperature at the core-mantle boundary -4 ø . Uniform energy 
deposition is an idealization since even uniform elastic properties 
lead to strain and dissipation increasing with depth. 

Consider a zone of high tidal dissipation. Since radioactive 
minerals tend to migrate upward, localized deposition at depth 
would increase the importance of tidal deposition with respect to 
radiogenic sources. An attenuation zone from 350 to 640 km 
radius has 4.2% of the lunar volume. This zone is known to be a 

sink i;or seismic energy, so it is possible that a substantial portion 
of the tidal energy is being deposited in a small volume just 
above the core. If most of the tidal energy is being deposited in 
the attenuation zone, then the (steady state) outward flow of tidal 
and turbulent power would raise the temperature -32 ø at the top 
of the attenuation zone. 

On evolutionary timescales, thermal effects from tides are 
more interesting. This question has been considered by Peale 
and Cassen [1978]. To scale their power calculations to the 
monthly k2/Q of this paper, multiply by 3.45. The frequency 
dependence of this paper's Q would increase that further. 
Dividing the accumulated energy by the product of heat capacity 
(f.2x107 ergs gm -• øC-l) and mass (7.35x1025 gm) gives an 
upper limit for average temperature increase. Since the early 
tidal evolution is fast and deposits most of the energy early in the 
Moon's history, the limit may be close to the early temperature 
gain. Peale and Cassen estimated that tidal dissipation would 
increase the mean lunar temperature by 40øC, but the above 
factor raises it to 140øC. For a uniform Moon they also 
calculated the spatial distribution of power per volume, and the 
center receives about three times the average. Thus Peale and 
Cassen's scaled results indicate that even a uniform Moon could 

have tidally heated the center by -400øC, and for a nonuniform 
Moon it could be higher. 

Peale and Cassen stretched the timescale for tidal evolution to 

match the age of the two bodies, and their above total heating is 
proportional to the stretching. This was done because, 
extrapolated backward, the measured tidal acceleration brings the 
Moon close to the Earth in a time (1.6x109 years by our 
calculations) that is much less than the age of either. Even with a 
uniformly stretched timescale (a factor of--2.7), the time to 
evolve outward to the distance (about half present) of Wards 
[1975] spin transition is fast, <108 years. The tilt of the lunar 
equator and, consequently, the tidal and (if the core is liquid) 
turbulent power are increased during and near the transition. In 
addition to the transition, high power occurs when the Moon is 
close to the Earth. However, computations based on the present 
measurements are not easily extrapolated to times before the 
figure froze or into the magma ocean era. 

The Earth's tidal dissipation is mainly localized in the oceans. 
The extent, depth, and shape of the oceans depend on plate 
motion, so it is reasonable that the tidal Q varies, and it is 
plausible that the present tidal rate is higher than average. The 
tidal response of the oceans to the tidal forces at the tidal 
frequencies depends on the natural frequencies, strengths, and 
dissipation of oceanic normal modes. The normal modes depend 
on the changing configurations of the oceans and continents, and 
the tidal frequencies change owing to the evolution of the lunar 
orbit and Earth's spin. The timescale stretching is an important 
question, and one can look to the tidal paleorotation data for 
guidance. As reviewed by Lambeck [1980, 1988], paleorotation 
data are most dense for the past 4x108 years, but are noisy. The 
number of days per year seems to support an average rate of 
orbital evolution compatible with, or somewhat less than, the 
LLR-derived tidal recession. The number of days per month 
indicates either a lower rate, a nontidal acceleration of Earth 

rotation, or a systematic loss of tidal bands. Two older data may 
indicate a slightly stretched timescale for the past 9x108 years 
[Sonett et al., 1996]. Any substantial stretching appears to be 
earlier. The timescale problem has been investigated using 
idealized ocean models. As summarized by Bills and Ray [1999], 
the most important influence is found to be the changing tidal 
frequency. The present semidiurnal tidal frequencies are higher 
than the most important normal mode frequencies, and the faster 
spin rate in the past would have decreased the tidal 1/Q. Thus the 
timescale is stretched nonuniformly. The present tidal evolution 
is similar to measured values, and earlier rates are slower than 

those based on constant Q. 
Peale and Cassen's [1978] tidal power computations kept the 

orbit eccentricity and inclination fixed while the distance 
changed. Preliminary calculations here indicate that an evolving 
orbit increases the power deposited in the Moon by both tides and 
core-mantle interaction. This occurs because, near the spin 
transition, both lunar tides and core dissipation cause a large 
negative orbital inclination rate, so a large inclination (>30 ø) is 
possible before the transition. A larger inclination causes 
increased tidal and turbulent dissipation. With evolution and this 
paper's k2/Q the tidal power increase near the spin transition is an 
order of magnitude larger than that of Peale and Cassen. Without 
stretching the timescale it is possible to heat the center by 
--,200øC, provided a Q of 37 is appropriate; most (90%) of this 
heating occurs in the first 1.3x108 years (<3x107 years to reach 
transition). Stretching the timescale increases the energy 
deposited in the Moon (a factor of 2.7 for a uniform stretch) and 
also increases the pretransitional orbital inclination. Stretching 
can also delay the evolution of semimajor axis through the 
transition distance if the Moon can extract as much power from 
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the orbit as the Earth deposits, but the decreasing inclination ends 
such a balance by reducing the power that the Moon extracts. 
Tides may be a significant source of heating for the early Moon, 
and much of that heating is deep. 

During the spin transition a molten core comparable to that 
existing today would generate peak power (10 27 ergs yr -1) and 
accumulated energy similar to that from tides, but it would be 
deposited in < 1% of the lunar volume. The liquid core formation 
history is not known. It may have originated during lunar 
formation. Another possibility is that a small core was present 
before transition, and the additional heating at the core-mantle 
boundary increased melting and core size. Yet another 
possibility is that the combination of heating by accretion, 
radioactive decay, and tides first generated a liquid core or layer 
before the Moon finished passing through the high-obliquity 
event. Once the turbulent dissipation starts with high equatorial 
tilt, that energy is deposited in a relatively small volume, and it 
can promote further melting, fluid convection, and a dynamo (see 
previous section). The unknown history makes the accumulated 
turbulent energy very uncertain. The possible upper range of 
energy densities would have caused a dramatic thermal event for 
the core and the adjacent mantle region. 

If the strongest remanent magnetism in lunar rocks 
corresponds to the spin transition, then the timing is 5x 108 years 
late compared to a uniformly stretched tidal evolution timescale. 
Of the Earth's present tidal dissipation, 97% is in the oceans. On 
the earliest Earth the oceans were likely very different from now. 
The heavy bombardment would have supplied volatiles, but the 
largest impacts could remove atmosphere and ocean. For 
comparison, basin-forming events occurred on the Moon between 
3.8 and 3.9 billion years ago; earlier basins either have been 
erased or were not sampled by missions. The early Earth was 
heated by both impacts and core formation. Galer [1991] 
considers that prior to about 3.8x109 years ago, the warmer 
mantle would have prevented any continental masses from rising 
above the elevation of oceanic rock as they do today. It is 
plausible that intermittent oceans, less continental material, and 
reduced height difference would make the early Earth less 
effective at dissipating energy and evolving the lunar orbit 
outward. Even without oceans on Earth, the Moon would evolve 

outward owing to solid-body Q. 
A qualification is in order. The preceding temperature 

increments are useful for relative comparisons of energy 
deposition, but strong heating of any part of the Moon can 
promote solid convection at the expense of temperature increase 
[Schubert et al., 1980], and any melting would absorb heat. 
Starting a thermal model with a core 100ø-200øC hotter than the 
mantle, Konrad and Spohn [1997] and Spohn et al. [1999] find 
that the early Moon had convection in the solid mantle. These 
computations generate mantle plumes which, for upwelling 
plumes, result in pressure release partial melting in the upper 
mantle. This melt is available for volcanism. The results of these 

two papers also seem appropriate if the initial excess core heat is 
replaced with turbulent heating at the core-mantle boundary, and 
Petrova and Gusev [1997] have suggested that a turbulent 
interaction could also cause plumes. Konrad and Spohn also find 
convection in the early lunar fluid core. 

There are many uncertainties and concerns. It is not known 
when the core becomes molten. Near the spin transition both 
lunar tides and core dissipation cause large inclination changes, 
so a large orbital inclination is possible before the transition, and 
that increases both tidal and turbulent power deposited in the 
Moon. Any stretching of the timescale makes these even larger. 

If the present low tidal Q is due to a partial melt in the attenuation 
zone, the earlier Q could have been very different before heating 
or core formation. 

The LLR fits of this paper indicate a present eccentricity rate 
of 2.0x10 -ll yr -1. The (Earth+Moon) theory predicts from 
0.7x10 -ll yr -1 to about 1.0x10 -ll yr -1 with dissipation in the 
Moon canceling 40-50% of the effect from the Earth. This is a 
serious discrepancy. Stretching the timescale for tidal evolution 
of the orbit by reducing the dissipation in the Earth would make 
the average eccentricity rate negative for much of ,the time of 
evolution, on the basis of the theoretical calculations. However, 

the unexplained anomalies in the eccentricity rate and its 
computation make any extrapolation unclear. Higher eccentricity 
in the past would increase the dissipation in the Moon. Goldreich 
[1963] appreciated that dissipation in the Moon might reverse the 
sign of the eccentricity rate. Recent studies such as Mignard 
[1981] and Touma and Wisdom [1998] considered evolution for 
several values of lunar dissipation, but variable orientation with 
the spin transition was not modeled. The "problem" of a sizeable 
initial orbit inclination is increased when lunar orientation is 

included in calculations of dissipation and evolution. Tidal 
evolution is reviewed by Peale [1999]. 

At the lunar surface, tidal displacements from the largest 
monthly terms are -0.1 m. Consequently, the Q of 37 
corresponds to a few millimeters for the phase-shifted 
components. Tidal displacement is presently detected (h 2 in 
Table 11), but not with sufficient accuracy to see such effects. 
For the solutions of Table 11 the Love number 12 is constrained to 
be 0.3 h 2, the relation expected for a homogeneous elastic solid. 

The lunar science discussion of Dickey et al. [1994] points out 
that an oblate lunar core can bias the LLR solution values of k 2. 
Simple extrapolation of the seismic S wave mantle speeds 
through the attenuation zone predicts k 2 values lower than the 
LLR results by -25% for the Nakamura [1983] S wave profile 

and 15% for the Goins et al. [1981] profile. Lowering the S wave 
velocities in the attenuation zone would increase the seismic 

predictions. Given this paper's evidence for a fluid core, the LLR 
values of k 2 may need to be reduced up to 25%. The solutions 
for tidal dissipation are sensitive to k2/Q, so if the Love number is 
reduced, all of the Q values would scale in proportion, but the 
calculations of energy dissipation would be unchanged. Such a 
systematic scaling is not included in the random uncertainties in 
k 2 and tidal time delay in Table 11 and the Q values in the text or 
Table 12. In principle, the h 2 determination could detect such a 
scaling, but the present uncertainty is too large. Rotation 
signatures due to an oblate core should be orthogonal to the 
dissipation signatures and will be the subject of future study. 

Damping of the free librations can be calculated from the 
equations of this paper (sections 7 and 12) or Peale [1976]. For 
the free libration in longitude the damping time is 2.7x104 years. 
Most of the damping is from the tides, and the uncertainty in the 
inverse is 50% (1/Q at 3 years in Table 12). The damping time 
for the wobble mode is about 2.0x 106 years and is dominated by 
tides. The uncertain extrapolation of the tidal Q to 75 years 
causes a 90% uncertainty for the inverse. The 
precession/nutation mode damping is 1.65x108 years (15% 
uncertainty) with core damping 70% and tidal damping 30%. 
The energy in each free libration mode is proportional to the 
amplitude squared. Amplitudes are taken from Newhall and 
Williams [1997] and Williams et al. (2001). The free libration in 
longitude has an energy of 9.6x1016 ergs, and it is dissipating 
7x10 •2 ergs yr -1. For the two latitude modes the energy is not 
constant during one cycle, so an average energy is used here. 
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The average in the wobble mode is 2.9x1021 ergs, and the power 
loss is 3x1015 ergs yr -1. The small precession/nutation mode has 
an average energy of 3x1013 ergs and a loss of only 
2x 108 ergs yr -1. 

21. Summary 

For 2 decades the analysis of Lunar Laser Ranging (LLR) data 
has detected a displacement in the Moon's precessing pole of 
rotation indicating energy dissipation. Two explanations have 
been offered: tidal losses in the Moon and interaction at the 

interface between a liquid core and solid mantle. The key to 
distinguishing the two causes is small additional influences on 
the rotation. Both numerical and analytical approaches are 
considered. 

The orbit and lunar rotation are integrated numerically with a 
model for tides and fluid core. These numerical results are used 

to calculate the range during data fits. The differential equations 
for dissipation acting on rotation are set up (sections 2 and 3). 
Analytical series solutions are also developed for both 
interpretation and alternate fits. Section 4 continues the 
development for series solutions, and section 5 presents the 
series. Tables 1 and 2 give the dependence of each rotation term 
on each periodic tide's Q. Evaluations are given /'or two 
functions of tidal Q versus frequency: constant Q (Table 3) and Q 
proportional to inverse frequency (Table 4). The most useful 
terms influence the LLR data at periods of 1 month, 206 days, 
1 year, 3 years, and 6 years. Tidal dissipation also damps free 
librations (section 7) and causes secular orbit perturbations 
(section 8, Table 6). 

The mathematical model for a fluid-core/solid-mantle 

interaction (section 9) sets the torque proportional to the angular 
velocity difference between spinning core and mantle. This rule 
is used for numerical and analytical approaches. As the mantle 
orientation precesses in 18.6 years it induces a core precession, 
but with much smaller tilt and an offset node (section 10). The 
core orientation is closer to the ecliptic plane than to the mantle. 
The core does not rotate at the same rate as the mantle, and this 
causes a longitude offset for the direction of the principal axes. 
The core dissipation causes the node of the equator plane on the 
ecliptic and the pole direction to be shifted. The parameter K, 
which relates torque to angular velocity difference, is discussed 
in section 11. The K for turbulent coupling is a function of core 
radius, fluid density at the boundary, and several other 
parameters. Topography on the boundary may increase coupling. 

For analytical investigation the coupled equations for core and 
mantle rotation are developed (section 12). The separate rotation 
of the core introduces core damping modes. The core modes 
damp rapidly; -140 years is estimated. Expressions for slower 
damping of mantle free modes are also given. The forced terms 
are derived (section 13, Tables 7 and 8), but the precessing pole 
offset is by far the most observable core term. The forced terms, 
including the pole offset, are mainly sensitive to K. A special 
term, due to the secular motion of the ecliptic plane, is directly 
sensitive to core moment rather than K (section 14). It offers 
future possibilities to determine that moment. 

Lunar core dissipation causes secular oi, bit perturbations 
(section 15). For a given pole offset, perturbations from a core 
are smaller than those caused by tides on the Moon. This 
difference permits an orbit test for separating core and tidal 
dissipation, with the eccentricity rate being the most useful of the 
perturbations (section 16). Tides on the Earth also cause secular 
orbit perturbations, so an orbit test is sensitive to more dissipation 

sources than a rotation test. At present, the lunar rotation is the 
preferred test to distinguish dissipation from core and tides 
(section 17). 

Twenty-eight years of Lunar Laser Ranging data are used to 
make solutions for dissipation effects (section 18). Numerically 
generated partial derivatives and analytical coefficients are both 
used as fit parameters (Table 1 1). All solutions indicate 
substantial dissipation from both a molten core and tides. Four 
dissipation coefficients are detected, and Plate 1 compares them 
with calculations using tides alone and tides plus core. The core 
parameter exceeds three times its uncertainty. Core-only 
interpretations fare worse, failing by 9 (5. The tidal Q at 1 month 
is 37 (-4,+6), and at 1 year Q is 60 (-15,+30). If a power law is 
used for Q versus frequency, the exponent is -0.19+0.13, so Q 
increases slowly with period. The orbit eccentricity rate from fits 
is 2x10 -ll yr -1. This is two to three times the expected rate and 
is not understood. 

With turbulent core-mantle coupling the inferred core radius is 
335 (-21,+17)km if it is assumed to be iron (section 19). 
Because topography at the core-mantle boundary would increase 
the coupling, the core radius is presented as a 1-(5 upper limit: 
352 km for iron and 374 km for an Fe/Fe-S eutectic. Table 13 

gives core parameters for a spread of possibilities: the two 
extreme compositions and liquid cores with and without solid 
inner cores. Other lunar science information is compatible with 
or supports a presently solid or molten core. 

The power drawn from the orbit and dissipated in the Moon is 
(4.3-+0.6)x1023 ergs yr -• for tides and (1.9_+0.5)x1022 ergs yr -1 
for the core-mantle interaction (section 20). These are minor 
compared to radiogenic heating. Deep-focus moonquakes are 
thought to be triggered by tides and a small fraction of the tidal 
energy is sufficient to power them. The low tidal Q is surprising. 
The highest seismic damping is just above the core, and it has 
been suggested that this is a zone of partial melt. It is plausible 
that this zone dominates the tidal damping. Damping times for 
the free librations are calculated from the core and tide 
dissipation. 

Both tide and core dissipation may have been significant heat 
sources in the early Moon. The dissipated power would have 
been high when the Moon was near the Earth and decreased as 
the Moon evolved outward owing to tidal dissipation in the Earth, 
but an additional peak would occur at about half the present 
distance. A transition between two spin states would have caused 
temporary high lunar obliquity and an increase in the energy 
dissipation from lunar tides and core. Tidal dissipation could 
have heated the central region by several hundred degrees. If the 
tidal dissipation is localized in the attenuation zone adjacent to 
the core, this region could have been heated even more. If the 
lunar core was its current size, a similar amount of energy would 
have been deposited in the smaller volume of the core-mantle 
boundary. This early energy could have caused major thermal 
activity in core and lower mantle, temporarily driving convection 
in the fluid core and solid convection in the lower mantle and 
powering a magnetic field. Thus the remanent magnetization in 
lunar rocks, peaking circa 3.8x109 years ago during the time of 
mare volcanism, may record the passage of the Moon through the 
spin transition as the Moon evolved outward under the action of 
the Earth. 

Detection of an independently rotating molten core through its 
drag on the mantle exceeds three times its uncertainty. The 
association of high core dissipation during a change of spin state 
with peak remanent magnetization is plausible but unproved. 
There are ample opportunities for future investigation. 
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Appendix A: Spherically Symmetrical Distortion 

In (8) the rotational potential was separated into degree two 
and spherically symmetrical parts. To describe a body's elastic 
response, the second-degree Love number k 2 is more familiar 
than the spherically symmetrical parameter designated s in 
sections 3 and 4. Love [1944] presented the displacement due to 
the rotational potential r2002/3 for the incompressible 
homogeneous sphere. Dahlen [1976] considered a more general 
body. He gave differential equations for displacement, and he 
also addressed the moment of inertia change. Working with 
perturbed rotation (A002=2 00A00), Dahlen introduced a factor of 
2 in his definition of displacement that is not used by Love. 
Yoder et al. [1981] followed Dahlen, while Yoder [1982] used the 
unperturbed potential with Love's solution. This appendix uses 
Love's potential, considers the moment change, and presents 
Love's displacement and the resulting moment change for the 
homogeneous case. 

For an incompressible homogeneous sphere with density p, 
radius R, bulk modulus K, and shear modulus or rigidity p, 
Love's solution (his article 175) for the radial displacement U(r) 
using the spherically symmetrical rotational potential is 

8 

U(r)= Pcø2 R2r (5K+ •-p r 2) ( 4 ) 3K -R2. (A1) 15 

This problem is analogous to the self-gravitating sphere (Love's 
article 98). The strain dU/dr reverses sign in the interior. The 
displacement at the surface depends on K, but not p. 

2p•2R 3 
U(R) = 45 K (A2) 

D•hI½n [1976] defined a parameter d 0 that with the U here would 
be 3g(R) U(R)/•2R 2, where g(R) is the surface gravitational 
acceleration (1.623 m s -2 for the Moon). 

A solid's mass element dm = 4 • r 2 p dr is invariant to spherical 
distortion. Evaluate the moment of inertia from the integral 

•- ( r + U(r) )2 dm. (A3) 

For small distortions the change in the moment is 

AI = -• p(r) U(r) r • dr. (A4) 

The moment matrix change is AI times the identity matrix. To 
put A/into the form of (9) and (12), define 

16•rG ;ff s = cø 2 Rs p(r) U(r) r • dr. (A5) 

This looks like Dahlen's [1976] expression for n 0, but his U(r) 
has an additional factor of 2, so s = no/2. 

For a homogeneous sphere, use a constant density and the 
displacement (A1) in the integral of (A5). 

16GMp (5K+ -? • ) 
(A6) 

( s= 525RK K+ •- • 
Note that GM/R = g(R)R = V2c , where v c is the surface circular 
orbital speed (1.680 km s -i for the Moon). When the above 

result for s is doubled, it agrees with Yoder's [1982] value for n o. 
The elastic parameters are related to the P and S wave speeds: 

4 
ß 

V/= , (A7) 

Vs2 = la (A8) 
P 

While k 2 is sensitive to V s and the shear modulus p, both speeds 
and both elastic parameters influence s. The phase shifts and 
specific dissipation Q parameters associated with s are not 
expected to be the same as those for k 2. 

The seismic speeds are well determined in the upper zones of 
the Moon but uncertain for the deepest regions [Goins et al., 
1981; Nakamura, 1983; Khan et al., 2000]. For computation, 
V S = 4.4 km s -1 and V?= 7.8 km s -1 are used here. The Love 
number k 2 should be between 0.02 and 0.03, and both s and d o 
should be about 0.010-0.012. The spherical radial displacement 
of the lunar surface is -5 cm owing to the rotation. For 
comparison, a Love number h 2 = 0.04 causes the surface at the 
pole to decrease 18 cm and the equator to increase 9 cm (ignoring 
the question of whether this Love number is appropriate for the 
static part of the distortion). The net surface change is 13 cm 
downward at the pole and 14 cm outward at the equator. The 
relative change of rotation rate A•/• is -10 -4, so the spin- 
induced surface variations are -0.03 mm. By contrast, tides 
raised by the Earth are -0.1 m, while those raised by the Sun are 
2 mm. 

The time variation of tidal distortion greatly exceeds the 
variation of spin distortion, and the effects on rotation are 
similarly stark. The largest rotation effect due to s displaces the 
pole by (Apl, AP2) = -0.05" s (sin F, cos F). The largest tidal k 2 
effect is (Apl, AP2 ) = 74" k 2 (sin F, cos F). The s pair of terms 
comes from the constant part of AI and would disappear if the 
mean moments were put in the "rigid" moments A, B, and C. The 
k 2 pair is dominated by variable moment effects. The largest 
dissipation term in longitude from s is 0.003" (s/Q)cos 2(F-O, 
very small compared to Tables 1-4 for k2/Q. Consequently, the 
Love number k 2 and associated Q values can be determined from 
analyses of Lunar Laser data while the effects of s and s/Q are 
too small to fit those parameters. 

Appendix B' Toroidal Distortion 

Acceleration of the rotation will cause forces on a body. In the 
rotating coordinate system the acceleration is rx•. The resulting 
distortion is toroidal about the axis of spin acceleration. Bills 
[1995] suggested that the toroidal distortion could be mimicking 
rotation and cormpting fits of the Lunar Laser ranges, but he did 
not compute its size. Yoder [1982] computed the form of the 
distortion solution for the homogeneous case. Below, Yoder's 
solution is modified to give distortion without a change in 
rotation. 

Yoder [1982] gives the solution for the incompressible 
homogeneous sphere. The acceleration 6)causes a twisting 
distortion about the axis of angular acceleration. Here the 
particular solution is chosen so that the acceleration-induced 
distortion does not modify the angular momentu.m. For a 
distortion vector U and mass element dm, set I rxU dm = O. 
Restricting our interest to periodic variations of the magnitude of 
6), there results 
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WILLIAMS ET AL.' LUNAR DISSIPATION IN MANTLE AND CORE 27,965 

P (r 2 5 R2)rx(b (B1) K U(r)= l•gg -• ' 
12 

The notation for density, shear modulus, and radius are the same • 
as used for the spherical distortion. The reversal of sign in the •, 
interior keeps the angular momentum from changing. The L 
distortion at the surface is L' 

pR 2 
U(R)= 3--• Rx•o. (B2) m rn 

The surface distortion does look like a rotation about the angular n 
acceleration axis and it can mimic a rotation, but the distortion n' 
with depth only resembles solid rotation for the particular P 
solution. Pl, P 2 

The two largest accelerations of the body-referenced spin axis 
are from the monthly variation of physical libration in longitude P i, P5 
and a periodic variation of the precessing spin pole direction with 
respect to the body z axis. The resulting distortion at the surface P 
expressed in micrometers is Pave 

P2 
U(R) = -4 •lxk sin • + 12 •lxj sin F. (B3) Q 

The unit vectors j and k are in the direction of the y and z body r 
axes, while the unit • vector is toward a surface point such as a r 
lunar retroreflector. The toroidal distortion is not a significant rms 
influence on the LLR fits and is not large enough to warrant R 
modeling. R' 

R 

Notation 

a 

a' b' 

A,B,C 
C' 

C21, C22 
D 

D 

e 

E 

F 

G 

g 
H 

h2 
i,j 
i 

I 

I' 

I 

I' 

Irigid 
Itide 
Ispin 
J2 
k2 
kf 

orbital semimajor axis of Moon. 
amplitudes in section 13; subscripts s, c mean sine 
and cosine components. 
core amplitudes in section 13; subscripts s, c mean 
sine and cosine components. 
constant lunar moments of inertia. 

core moment. 

second-degree gravity harmonics of Moon. 
mean elongation of Moon from Sun. 
with subscripts L, w, p, a damping coefficient. 
orbital eccentricity for Moon. 
combination of parameters used in (28) and 
separately in (52); Earth mean longitude in Table 7. 
mean argument of latitude of Moon. 
core fraction for precession offset. 
forcing terms in differential equations. 
gravitational constant. 
gravitational acceleration. 
forcing amplitude for longitude libration. 
vertical displacement Love number. 
sub.scripts are indices running 1-3. 
orbital inclination of Moon to ecliptic, 5.145ø; 
imaginary in section 13. 
mean tilt of lunar equator to ecliptic, 1.543 ø . 
mean tilt of core equator to ecliptic plane. 
moment of inertia matrix. 

core moment of inertia matrix. 

moment of inertia matrix, rigid body part. 
moment of inertia matrix, tidal deformation. 

moment of inertia matrix, spin deformation. 
second-degree gravity harmonic of Moon. 
potential Love number. 
fluid Love number. 

R S 

S•,S 2, S3 
S21, S22 
S31, S33 
t 

T 

T 2 
Tc 

core-mantle coupling parameter; sometimes used 
with subscripts t and v. 
horizontal displacement Love number. 
mean anomaly of Moon. 
mean anomaly of Earth-Moon orbit about Sun. 
mean longitude of Moon. 
mean longitude of Sun with respect to Earth-Moon 
center of mass. 

mass of Earth; Mars mean longitude in Table 7. 
mass of Moon. 

mean motion of Moon. 

mean motion of Earth-Moon orbit about Sun. 

orbital semilatus rectum for lunar orbit. 

physical libration in latitude; overdots are time 
derivatives. 

core physical libration in latitude; overdots are time 
derivatives. 

power; fit parameter in section 17. 
average power. 

second Legendre function. 
specific dissipation for tides; various subscripts 
indicate frequency. 
distance from Moon. 

position vector from Moon to Earth or Sun. 
abbreviation for root-mean-square. 
radius of Moon, 1738 km; range in section 17. 
radius of lunar core. 

range vector from an observatory on the Earth to a 
retroreflector on Moon. 

vector for geocentric ranging station. 
vector for selenocentric retroreflector position. 
spherical spin parameter. 
numerical factors. 

second-degree gravity harmonics of Moon. 
third-degree gravity harmonics of Moon. 
time. 

torque vector. 

torque vector, second-degree contribution. 
torque vector, core contribution 
unit vector from Moon to Earth or Sun. 

/X1, u 2, u 3 components of unit vector from Moon to Earth or 
Sun in lunar body-fixed coordinates. 

u' unit vector to point on lunar surface. 

Uij matrix components, (a/r) 3 u i uj. 
v core-mantle relative velocity vector at boundary. 
V Venus mean longitude in Table 7. 
Vtide tidal potential. 
Vspin spin potential. 
w exponent in Q versus frequency power law. 
x, y, z coordinates. 
X, Y forcing amplitudes in section 13. 
X, Y, Z Moon centered reflector coordinates in section 17. 

tz ( C-B )/A . 
[3 ( C-A )/•. 
¾ (B-A)/C. 

8ij delta function. 
A used to indicate a change, e.g., Aa, Ae, and An. 
At time delay. 

A c, A m, A t determinants. 
•c fluid core parameter, equation (58). 
v frequency; kinematic viscosity of core in section 11. 

Vp frequency of free precession, a resonance frequency. 
n: mathematical symbol for pi. 
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27,966 WILLIAMS ET AL.: LUNAR DISSIPATION IN MANTLE AND CORE 

ecliptic longitude of axis of ecliptic plane rotation, 
174.87 ø at J2000. 

fluid core density. 
physical libration angle. 
physical libration angle. 
physical libration in longitude. 
core physical libration in longitude. 
angular velocity. 
angular velocity vector. 

0)1' 0)2' 0)3 angular velocity components. 
0•' core angular velocity vector. 
•o unit angular velocity. 
• mean longitude of perigee of lunar orbit. 
F2 mean orbital node of Moon; overdots are time 

derivatives. 

• combination of parameters for core computations, 
dimensionless, section 10; in section 13 it is used 

with subscripts L and v. 
• combination used with tides; see equation (25). 
{p, 0, • Euler angles for lunar orientation; overdots are time 

derivatives. 

{p', 0', •' Euler angles for core orientation; overdots are time 
derivatives. 

Mathematical Operations 
d derivative. 

3 partial derivative. 
V mathematical symbol for gradient. 
x mathematical symbol for cross product. 
ß mathematical symbol for dot product; overdots are 

time derivatives. 

* indicates time delayed, e.g., fn* = fn(t-At); used for 
complex conjugate in section 12. 

5• summation. 

j' integral. 

Units 

" seconds of arc 

' minutes of arc 

Appendices 
d o Dahlen's spherical displacement parameter. 
j, k unit vectors. 
K bulk modulus. 

n o Dahlen's spherical spin parameter. 
r radius to point in Moon. 
R vector to point on surface. 
•1 unit vector to point on surface. 
U(r) elastic displacement. 

V?, V s P and S wave speeds. 
v c circular orbit speed. 
AI change in moment of inertia. 
p shear modulus or rigidity. 
p density. 
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